Marketing Mix Modeling with Meta Robyn

Sheryl Xu, Master of Science @ Northwestern University

2025-07-27

Part I: Introduction

Meta Robyn Meta’s Robyn is an open-source, automated Marketing Mix Modeling (MMM) tool that
helps marketers quantify the effectiveness of various media channels and make data-driven budget alloca-
tion decisions. It combines advanced statistical modeling with Bayesian optimization to evaluate channel
contributions, model saturation and adstock effects, and generate multiple candidate models along a Pareto
frontier.

Robyn is particularly valuable because it brings transparency, scalability, and automation to a traditionally
manual and resource-intensive process—enabling more agile marketing strategies in a privacy-centric world
where granular user-level tracking becomes increasingly limited.

This project presents a time-series Marketing Mix Modeling (MMM) analysis using Meta’s Robyn package,
with the objective of quantifying the impact of various marketing channels and informing optimized media
budget allocation.

The analysis uses a synthetic dataset originally developed by Professor Elea Feit of Drexel University for
educational purposes. Three CSV files form the foundation of this project:

e customer.csv, which contains user profile information.

e impressions.csv, detailing ad exposures and clicks by date and channel.

e transactions.csv, which records the daily transactions made by users.

Data Import and Overview

customer <- fread("/Users/itsxuuu/Desktop/MMM/Data/customer.csv")
impressions <- fread("/Users/itsxuuu/Desktop/MMM/Data/impressions.csv")
transactions <- fread("/Users/itsxuuu/Desktop/MMM/Data/transactions.csv")

head (customer)

#it id past.purchase email direct
<int> <int> <int> <int>
1: 1 0 0 1
2: 2 1 1 1
3: 3 1 1 0
4: 4 0 0 0
5: 5 1 1 1
6: 6 0 0 0

https://github.com/eleafeit/ad_response_tutorial/tree/master/R%20code
https://www.lebow.drexel.edu/people/eleafeit

customer.csv: Information about the users with some fields from their profiles. Each row in the file
represents a customer, 10,000 rows; the columns describe some basic information about each customer
including id number, whether the customer has made a purchase prior to the observation period, and
whether the customer is eligible to receive emails or direct mails.

head (impressions)

id date channel click

<int> <char> <char> <int>

#it 1: 1 1/6/2017 direct 0

#H 2: 1 2/3/2017 direct 0

3: 1 1/1/2017 social 0

4: 1 1/2/2017 social 0

5: 1 1/5/2017 social 0

6: 1 1/6/2017 social 0

e impressions.csv: Information about which users are connected to other users. Each row is an

exposure of marketing communication to a specific customer, 501,336 rows; the columns describe the
information about the customer’s impression towards an advertisement including id number for the
customer, date of impression, the channel of the ad exposure, and whether the customer clicked on the
ad.

head(transactions)

Vi id date last.touch last.click

<int> <int> <char> <char> <char>

#it 1: 1 2 1/4/2017 email none

2: 2 2 2/12/2017 email none

3: 3 3 2/2/2017 email none

4: 4 3 2/14/2017 email none

5: 5 5 1/4/2017 display email

6: 6 5 1/13/2017 display email

transactions.csv: Information about history of the user’s account registrations (logins) over time.
Each row is a transaction made by a customer; columns record the basic information of a transaction
including customer id, date of the transaction, channel of the last ad impression the customer saw
before the transaction, and channel of the last ad the customer clicked before the transaction.

Part II: Data Aggregation and Preparation

Aggregation is a critical step in preparing the data for Marketing Mix Modeling (MMM) using Meta’s Robyn
package. This process is necessary for the following reasons:

Time-series requirement: Robyn expects input data to be in a time-series format (daily, weekly, or
monthly). Aggregating the data ensures each row represents a consistent time unit—typically one day
in this case.

Aligning sales with media activity: Aggregation allows link daily sales outcomes with correspond-
ing daily impressions and clicks across different marketing channels, creating a unified dataset suitable
for modeling.

o Capturing zero-activity days: By joining aggregated impressions and transactions, the merged
dataset retains days with media exposure but no conversions (or vice versa), which is essential for
maintaining data continuity and ensuring a complete view of marketing activity over time.

daily_impressions <- impressions >

group_by(date, channel) %>

summarise (
impressions = n(),
clicks = sum(click, na.rm = TRUE),
.groups = "drop") %>%

pivot_wider(
names_from = channel,
values_from = c(impressions, clicks),
values_fill = 0)

daily_sales <- transactions 7>
group_by (date) %>/
summarise(sales = n(), .groups = "drop")

daily_data <- full_join(daily_sales, daily_impressions, by = "date") %>%
arrange (date) %>%
replace(is.na(.), 0)
daily_data$date <- as.Date(daily_data$date, format = "Ym/%d/%Y")
daily_impressions$date <- as.Date(daily_impressions$date, format = "Jm/%d/%Y")
daily_sales$date <- as.Date(daily_sales$date, format = "%m/%d/%Y")

Hyperparameter Tuning

This section defines the hyperparameter search space for each media channel, allowing Robyn to
explore a wide range of possible adstock and saturation dynamics.

Hyperparameters are essential in Robyn because they guide the model in capturing how advertising ef-
fects decay over time (adstock) and how returns diminish as impressions increase (saturation).
Without appropriate hyperparameter tuning, the model might underfit or overfit, leading to misleading
conclusions.

By setting realistic bounds for each channel’s parameters, the optimization process becomes both statistically
sound and reflective of expected media behavior—ultimately improving the accuracy and interpretability of
the final model.

hyperparameters <- list(
impressions_direct_alphas = c(0.5, 3),
impressions_direct_gammas = c(0.3, 1.0),

impressions_direct_thetas = c(0, 0.3),
impressions_display_alphas = c(0.5, 3),
impressions_display_gammas = c(0.3, 1.0),
impressions_display_thetas = c(0, 0.3),

impressions_email_alphas = c(0.5, 3),
impressions_email gammas = c(0.3, 1.0),
impressions_email_thetas = c(0, 0.3),

impressions_social_alphas = c(0.5, 3),

impressions_social_gammas = c(0.3, 1.0),
impressions_social_thetas = c(0, 0.3)

)

For each media channel (impressions_ direct, impressions_ display, impressions__email, impressions_ social),
it specifies ranges for three key hyperparameters:

e alpha: controls saturation, which is how quickly media impact diminishes as spend increases. Higher
values allow for slower saturation. c(0.5, 3) allows the model to test both low and high saturation.

e« gamma: shapes the response curve, controlling how steeply response increases with input. c¢(0.3,
1.0) captures the true response dynamics of each channel without forcing overly aggressive or flat
curves.

o theta: controls the adstock decay, which is how long the impact of media lasts over time. A higher
theta = longer carryover effect. c(0, 0.3) allows no carryover to up to ~30% of the media effect to
carry into the next period, especially for short-duration digital media.

Create InputCollect Object

To initiate the modeling process, the InputCollect object is constructed using the robyn_inputs () function.
This object serves as the foundational configuration for the Robyn model, consolidating the cleaned and
aggregated dataset (daily_data), variable mappings (e.g., date, dependent variable, and media channels),
modeling timeframe, adstock function, and predefined hyperparameter ranges.

InputCollect <- robyn_inputs(
dt_input = daily_data,

date_var = '"date",

dep_var = "sales",

dep_var_type = "conversion",

paid_media_vars = c("impressions_display", "impressions_social", "impressions_email", "impressions_di:

paid_media_spends = c("impressions_display", "impressions_social", "impressions_email", "impressions_
window_start = min(daily_data$date),

window_end = max(daily_data$date),

adstock = "geometric",

hyperparameters = hyperparameters

Model Training with Automated Search

Robyn’s robyn_run() function is a critical step in the modeling process, as it initiates the automated search
for optimal model configurations based on the defined hyperparameter space.

This function leverages Nevergrad’s evolutionary optimization to generate and evaluate hundreds of
model candidates across a multi-dimensional space of adstock rates, saturation curves, and channel effects.
Each model is scored using various diagnostic metrics (e.g., R-squared, NRMSE, MAPE) to identify
those that offer the best balance between fit and generalizability.

Due to GPU limitations, the modeling process is executed with conservative settings: 100 iterations, 200
trials, and a single core. While this limited the total number of models explored, it is sufficient to yield
a diverse set of high-performing candidates, enabling meaningful decomposition of media contribu-
tions and ROI estimation. This automated model selection process ensures objectivity, consistency, and
transparency in determining which media strategies are most effective.

OutputModels <- robyn_run(
InputCollect = InputCollect,
hyperparameters = hyperparameters,
iterations = 100,
trials = 200,
cores =1

Part III: Model Evaluation and Interpretation
Extract and Filter Final Model Candidates

The input objects OutputModels and InputCollect contain all the candidate models generated during the
robyn_run() step and the preprocessed data and parameters. The parameters pareto_fronts = 3 and
min_candidates = 10 tell Robyn to retain the top-performing models from up to three Pareto fronts,
ensuring a balance between performance and model complexity, while limiting the output to at least ten
candidate models.

OutputCollect <- robyn_outputs(
OutputModels = OutputModels,
InputCollect = InputCollect,
export = FALSE,
pareto_fronts = 3,
min_candidates = 10

)

1s(OutputCollect)

[1] "add_penalty_factor" "allPareto" "allSolutions"

[4] "calibration_constraint" "clusters" "cores"

[7] "hyper_fixed" "hyper_updated" "intercept"

[10] "intercept_sign" "iterations" "mediaVecCollect"
[13] "nevergrad_algo" "OutputModels" "pareto_fronts"
[16] "plot_folder" "resultCalibration" "resultHypParam"
[19] "seed" "trials" "uI"

[22] "xDecompAgg" "xDecompVecCollect"

The OutputCollect object contains all essential results from the Robyn modeling process, including top-
performing models, channel-level contributions, hyperparameter settings, and diagnostics. Key
components like xDecompAgg and xDecompVecCollect allow for detailed interpretation of media effectiveness
over time, while performance metrics and calibration details support model validation. This structured
output enables data-driven decision-making and transparent marketing optimization.

Top Model Summary

During the robyn_run() phase, Robyn creates hundreds of candidate models using randomized combinations
of hyperparameters (e.g., adstock decay, saturation levels). However, not all models are equally good —
some may overfit, underfit, or have unstable decompositions so it’s improtant to identify the best-performing
Marketing Mix Models (MMMSs) from all the candidates Robyn has generated during the training process.

The top model (solID = 151_96_1) has the best fit, explaining ~69.7% of sales variation (rsq_train =
0.697) with low prediction error (nrmse_train = 0.10).

top_models <- OutputCollect$xDecompAgg
filter(rn == "(Intercept)") %>%

w>%

select(solID, rsq_train, nrmse_train, decomp.rssd, mape) %>%

arrange (desc(rsq_train))

knitr: :kable(head(top_models), caption = "Top Candidate Models by R-squared")

Table 1: Top Candidate Models by R-squared

solID rsq_train nrmse_ train decomp.rssd mape
151_96_1 0.6971556 0.1045021 0.3659704 0
139_97_1 0.6716268 0.1088176 0.3610319 0
99_49 1 0.6475716 0.1127329 0.3798754 0
44 99 1 0.6386621 0.1141490 0.3895422 0
126_93_1 0.6333399 0.1149866 0.3684264 0
63_85_1 0.6107305 0.1184788 0.3776532 0

Best Model Decomposition

After identifying the top-performing model based on R-squared and other evaluation metrics, contribution
of each media channel is further examined using the selected model. The following analysis breaks down the
total sales impact attributed to each channel, providing insight into their relative effectiveness and
cost-efficiency. This forms the basis for ROI evaluation and future budget optimization.

best_model <- "151 96 1"

model_contrib <- OutputCollect$xDecomplgg 7%>%
filter(solID == best_model, rn != "(Intercept)") %>%

select(
channel = rn,
coef,
xDecompAgg,
xDecompPerc,
spend_share,
effect_share)

knitr: :kable(model_contrib, caption =

"Channel-Level Contributions")

Table 2: Channel-Level Contributions

channel coef xDecompAgg xDecompPerc spend__share effect_ share
impressions__display 232.3137 10015.7735 0.4464750 0.4399985 0.6442488
impressions_ social 148.6174 2569.3398 0.1145339 0.4616312 0.1652687
impressions__email 385.8309 2062.3165 0.0919323 0.0781407 0.1326553
impressions_ direct 324.7267 899.0069 0.0400752 0.0202296 0.0578272

The table resents the channel-level decomposition of the best model (solID = 151_96_1), showing:

o impressions_ display: Spend Share = 44.0%, Effect Share = 64.4%. Display is the most effective
channel — contributing the most to sales relative to its share of impressions. This implies high ROI.

« impressions_ social: Spend Share = 46.2%, Effect Share = 16.5%. Social ads received the most
impressions but contributed relatively little to conversions — possibly inefficient or oversaturated.

o impressions_ email: Spend Share = 7.8%, Effect Share = 13.3%. Email performed relatively well.
Its small impression share shows it’s very efficient and likely underinvested.

o impressions_ direct: Spend Share = 2.0%, Effect Share = 5.8%. Direct impressions contributed
some value despite a small share, suggesting opportunity for scaling with caution.

Channel-Level Contribution Analysis

model_contrib %>%
mutate(roi = xDecompAgg / (spend_share * sum(xDecompAgg))) %>
select(channel, roi) %>%
knitr::kable(caption = "Estimated ROI per Channel")

Table 3: Estimated ROI per Channel

channel roi

impressions_ display 1.4642070
impressions_social 0.3580103
impressions_ email 1.6976462
impressions_ direct 2.8585401

To evaluate the cost-effectiveness of each marketing channel, Return on Investment (ROI) is calculated by
dividing each channel’s total contribution xDecompAgg by its share of total media spend. This metric provides
a normalized view of how efficiently each channel converts media spend into sales.

Following this, a time-series decomposition plot is generated to visualize daily contributions of each
media channel over the campaign period. The xDecompVecCollect object is reshaped into long format using
pivot_longer (), enabling the use of ggplot2 to create a stacked area chart.

selected_vec <- OutputCollect$xDecompVecCollect 7>%
select(-dep_var, -depVarHat, -solID, -cluster, -top_sol)

selected_vec_long <- pivot_longer(
selected_vec,

cols = -ds,
names_to = "channel",
values_to = "contribution"

blue_palette <- scales::hue_pal() (length(unique(selected_vec_long$channel)))
names (blue_palette) <- unique(selected_vec_long$channel)

blue_palette <- c(
"#0A4C6A",
"#1B6CA8",
"#3B9DD5" ,
"#A4C8E1",
"#CODOEC" ,

"#T7BAFD4"
) [1:1length(unique(selected_vec_long$channel))]

ggplot(selected_vec_long, aes(x = ds, y = contribution, fill = channel)) +
geom_area(position = "stack", alpha = 0.9) +
scale_fill_manual(values = blue_palette) +
labs(
title = "Time-Series Channel Contributions",
x = "Date", y = "Sales Contribution", fill = "Channel"
) +
theme_minimal (base_size = 13)

Time—-Series Channel Contributions

600
& 400 Channel
.8 . impressions_direct
‘E . impressions_display
o . . .
@) . impressions_email
8 impressions_social
8 200 intercept
0
Jan 01 Jan 15 Feb 01 Feb 15 Mar 01
Date

This visualization helps illustrate how different channels drove sales over time and whether their impact
was consistent or episodic. Together, these analyses offer both macro-level efficiency insights and micro-level
temporal patterns, informing smarter budget allocation and campaign planning.

Interpretation:

e Display advertising yielded approximately 1.46 units of sales per unit of media spend, indicating
moderate efficiency.

e Social media advertising demonstrated the lowest efficiency, generating only 0.36 units of sales
per unit of spend, suggesting potential overinvestment or suboptimal performance.

e Email emerged as a highly efficient channel, delivering substantial sales impact relative to its
relatively low share of total spend—indicating it may be underleveraged.

e Direct impressions were the most efficient, producing nearly three times the return in sales
impact per unit of spend, signaling a strong opportunity for increased investment.

Robustness Check

To validate the reliability of the modeling insights, the top three performing models (ranked by R-squared
and predictive accuracy) are selected for comparative analysis. By examining the channel-level contri-
butions across these top models, the goal is to determine whether key findings (such as the dominance of
display advertising or the high efficiency of direct impressions) remain consistent regardless of specific model
variations.

This cross-model comparison helps ensure that conclusions are not overly dependent on a single model’s
parameters or random initialization. If the relative contribution patterns and ROI results are stable across
the best-performing models, it strengthens confidence in the robustness of the insights and supports more
confident media allocation recommendations.

top_ids <- top_models$solID[1:3]
multi_model_contrib <- OutputCollect$xDecompAgg 7>
filter(solID %in% top_ids, rn != "(Intercept)") %>%

select(solID, channel = rn, xDecompAgg, xDecompPerc, spend_share, effect_share)

knitr::kable(multi_model_contrib, caption = "Channel Contributions Across Top Models")

Table 4: Channel Contributions Across Top Models

solID channel xDecompAgg xDecompPerc spend__share effect_ share
99 49 1 impressions_ display 9612.1445 0.4284823 0.4399985 0.6637131
99 49 1 impressions_ social 2316.1134 0.1032458 0.4616312 0.1599263
99 49 1 impressions_ email 1837.5681 0.0819136 0.0781407 0.1268830
99 49 1 impressions_ direct 716.5538 0.0319420 0.0202296 0.0494776
139_97_1 impressions_ display 8862.0751 0.3950464 0.4399985 0.6126833
139 _97_1 impressions_ social 2335.2081 0.1040970 0.4616312 0.1614456
139 97 1 impressions_ email 2541.2058 0.1132798 0.0781407 0.1756873
139 _97_1 impressions_ direct 725.8769 0.0323575 0.0202296 0.0501838
151_96_1 impressions_ display 10015.7735 0.4464750 0.4399985 0.6442488
151_96_1 impressions_ social 2569.3398 0.1145339 0.4616312 0.1652687
151_96_1 impressions_email 2062.3165 0.0919323 0.0781407 0.1326553
151_96_1 impressions_ direct 899.0069 0.0400752 0.0202296 0.0578272
Interpretation:

« Display ads consistently dominate, with the highest absolute and percent contributions (xDecompAgg
and xDecompPerc) across all three models — and roughly aligned spend share (~44%). This suggests
a well-justified investment.

e Social ads also have a stable spend share (~6%) but deliver a much smaller effect share (16%),
indicating lower efficiency and potential overspend.

o Email consistently overperforms relative to its small spend share (~7.8%), delivering 12-17% of total
effect, suggesting it’s an underutilized high-ROI channel.

 Direct impressions, while minimal in spend (~2%), contribute around 5% of the total media effect,
reinforcing their high efficiency.

The results show a high level of consistency, with display advertising emerging as the strongest contrib-
utor to sales, justifying its significant investment. Social media, however, accounts for the largest share of
impressions but contributes relatively little to outcomes, suggesting overspending or inefficiency. Email and
direct impressions consistently deliver high impact relative to their spend, making them strong candidates
for increased investment. The alignment of findings across multiple top-performing models reinforces the
robustness of these insights and supports confident, data-driven media optimization decisions.

Part IV: Conclusion

This Marketing Mix Modeling (MMM) analysis, powered by Meta’s Robyn package, provided a robust
framework to quantify and visualize the contribution of various paid media channels to overall conversions.

Model Performance

The best-performing candidate explained approximately 69.7% of the variance in daily sales with relatively
low prediction error, indicating a strong and reliable fit.

e Top Performing Channels

— Display advertising and email campaigns were the most impactful drivers of revenue.

— Direct impressions delivered the highest ROI (2.86) — showing exceptional efficiency despite
their small share of total spend.

¢ Underperforming Channel

— Social media, while receiving the highest share of impressions, showed significantly lower ef-
ficiency, with an ROI of just 0.36 — suggesting a key opportunity for budget optimization or
reallocation.

Strategic Recommendations

Based on the model’s decomposition and ROI analysis, it is evident that some marketing channels are
significantly more cost-effective than others. To improve overall return on investment (ROI), it is
recommended to reallocate budget away from underperforming channels, particularly social media
impressions, which demonstrated a low ROI of only 0.36 despite receiving a high share of spend.

In contrast, email marketing and direct impressions showed strong cost-efficiency and high impact
relative to their budget allocation. Email achieved an ROI of 1.70 with a modest spend share, suggesting
that it is currently underutilized. Direct impressions were the most efficient, yielding an ROI close to
3.0—making it a prime candidate for increased investment.

These following changes aim to optimize budget allocation, increase marketing efficiency, and ultimately
drive higher incremental sales without increasing total spend.
¢ Reduce spend on social media impressions until ROI improves or targeting and creative strategies

are refined.

e Scale up investment in email campaigns, especially automated or personalized outreach, which
may yield even higher efficiency.

10

e Expand direct marketing efforts, potentially through retargeting, push notifications, or CRM-
driven outreach, to capitalize on its superior cost-effectiveness.

o A/B test new creatives or audience segments within high-ROI channels to maximize marginal
gains.

Limitations and Further Research

While this analysis provides a strong foundation for understanding media channel effectiveness using Meta’s
Robyn, there are several opportunities to enhance model accuracy and strategic applicability:

e Seasonality Patterns: The current model does not account for recurring trends such as day-of-week,
month, or seasonal fluctuations. Incorporating seasonality would help distinguish organic sales cycles
from media-driven impacts, leading to more precise attribution.

o External Variables: Key external factors such as macroeconomic indicators, competitor activities,
weather events, or public holidays were not included in this iteration. These variables can influence
consumer behavior independently of media spend and should be integrated to improve explanatory
power and realism.

e Scenario Simulations for Predictive Planning: The analysis is currently retrospective. By lever-
aging Robyn’s response curves and media saturation functions, future work can simulate “what-if”
scenarios—such as reallocating budget across channels—to forecast potential outcomes and support
forward-looking decision-making.

e Computational Limitations: Due to hardware constraints on a personal laptop, the model was
trained with a reduced number of iterations (100), trials (200), and a single CPU core. These con-
straints limited the depth of the hyperparameter search and the total number of candidate models
explored. Running the model on a cloud platform or high-performance machine could unlock more
robust optimization and broader model discovery.

11

	Part I: Introduction
	Data Import and Overview

	Part II: Data Aggregation and Preparation
	Hyperparameter Tuning
	Create InputCollect Object
	Model Training with Automated Search

	Part III: Model Evaluation and Interpretation
	Extract and Filter Final Model Candidates
	Top Model Summary
	Best Model Decomposition
	Channel-Level Contribution Analysis
	Robustness Check

	Part IV: Conclusion
	Model Performance
	Strategic Recommendations
	Limitations and Further Research

