
Predicting Video
Engagement & Virality

Group 9:
Grace Chen, Vanessa Chen, Amanda Lee, Sheryl Xu

IMC 463 Final Project

TikTok Platform:

Problem Definition

Research Question

How can TikTok video virality (measured by view count and engagement) be

predicted using available user data and content feature variables, and to what extent

can these variables be used to build a predictive model that forecasts a video’s potential

reach?

Dependent Variable Selection
After selecting the factors, we predicted two dependent variables, aim to detect whether these factors could affect the reach and

engagement of TikTok videos.

We believe reach and engagement are two different metrics that content creator should both take into consideration.

Reach and Engagement have different business implications: Reach = brand awareness and Engagement =

community/personal connection building.

Reach (View.Count)
Reach is mostly correlated with views, i.e.,
how many people saw the video. It’s primarily
driven by TikTok’s algorithm.

However, it doesn’t reflect whether a user is
genuinely interested in this video or actively
reacted to this video.

Engagement (Like.count + Share.count +
Comment.count)
Engagement reflects active participation—
how users responded to the content.

Sometimes high reach doesn’t mean a high
engagement, since users may scroll quickly but
also count as a view. It often related to emotion,
sentiment and other factors.

Independent Variable Selection
Based on all the factors, we figured out three big categories that could affect

the view and engagement of TikTok influencers’ videos:

1. User profile characteristics:
a.Follower count, like sum count, and the following counts: these are the metrics

representing the social capital and popularity on platforms.

b.Verified Status: serve as authenticity of content creator (categorical).

2. Video Quality
a. image_quality, brightness, sharpness: Directly affect viewer experiences and retention

3. Emotional Content
a. We believe all the emotion factors directly affect the engagement and views, and want to

analyze whether different tone would affect the engagement differently.

4. Sentiment Analysis
a.Similarly to the emotional content, we want to analyze whether sentiment detected in caption

would affect the view and engagement.

5. Creator Demographics:
a.age, gender.deepface, gender.amazon, race: These demographic factors may reveal

patterns in content performance or audience engagement.

Methodology
& Key findings

Regression Model - Reach
it.lm_view = lm(log(View.Count+1)~Follower.Count + Likes.sum.Count + Following.Count + as.factor(Verified.Status)

 + image_quality + Brightness + Sharpness + as.factor(Smile)+ Emotion_SURPRISED+Emotion_HAPPY

 +Emotion_CALM+Emotion_FEAR+Emotion_CONFUSED+Emotion_ANGRY+Emotion_SAD+Emotion_DISGUSTED

 +sentimentality_score_0_to_1 +age + as.factor(gender.deepface) + as.factor(gender.amazon) + as.factor(race), train_data)

From the model, we can see there are several factors affect

the view count of the video.

Follower and like sum count: directly indicate the

popularity of a content creator

sum count acts negatively, probably because of

multicollinearity

The negative emotion strongly reduce the performance

of the reach of the video.

Demographic wise, female performed worse, and black

creators shows a reduced performance.

Regression Model - log transformation

Since both view count and engagement are very likely to be right skewed (i.e., only a few of

the videos have an extremely high reach; most of them only have a very low reach), we

decided to use a log model to transform these two models.

Regression Model - Engage
tiktok$Engage <- tiktok$Share.Count + tiktok$Like.Count + tiktok$Comment.Count

fit.lm_engage = lm(log(Engage +1)~Follower.Count + Likes.sum.Count + Following.Count + as.factor(Verified.Status)

 + image_quality + Brightness + Sharpness + as.factor(Smile)+ Emotion_SURPRISED+Emotion_HAPPY

 +Emotion_CALM+Emotion_FEAR+Emotion_CONFUSED+Emotion_ANGRY+Emotion_SAD+Emotion_DISGUSTED

 +sentimentality_score_0_to_1 +age + as.factor(gender.deepface) + as.factor(gender.amazon) + as.factor(race), train_data)

The result of the engagement model is slightly different.

Follower count and like sum count still have a significant

impact on engagement. The age factor is also a significant

one: younger creators have more engagement. The verified

status is also positively related to the engagement.

Demographic-wise, white creators receive more

engagement of their videos.

Compared to the view model, high engagement is tightly

correlated to the image_quality.

Methodology

Out-of-Sample Estimation → 70/30 train/test split (holdout validation)

Purpose: Evaluate model's generalization to unseen data
Avoids overfitting and gives realistic performance estimates.

Methodology

We have many predictors.
We want a balance between complexity and performance.
We are doing exploratory modeling and want guidance on
important features.

Stepwise Selection

We have many predictors.
We want to shrink and select variables via penalty.
We want better generalization and scalability.
We want global optimization with better interpretability.

Lasso Regression

Some predictors are correlated, and we want to remove
collinearity via independent PCs.
We want to have fewer predictors.
We want to reduce noise by filtering out minor components
with low variance.

PCA

Methods Stepwise Selection Lasso Regression PCA-Based Regression

Purpose
Selects the best subset of

variables
Shrinks and selects
variables via penalty

Reduces dimensionality using
principal components

Variable Interpretability
✅ Easy to interpret

 (retains original variables)
✅ Mostly interpretable
(keeps real variables)

❌ Not interpretable
(PCs are combinations of variables)

Handles Multicollinearity
⚠️ Sometimes

(removes redundant vars)
✅ Strong at handling

multicollinearity
✅ Removes collinearity via

orthogonal PCs

Model Limitations
❌ Only focus on local

optimization

❌ Multicollinearity Bias
(Retains one variable from

correlated predictors)

❌ Uses abstract PCs
(less human-readable)

Methodology

Key Findings: Stepwise Selections

Methods:
Stepwise variable selection
10-fold cross-validation on 70% training data
Final evaluation on 30% held-out test set

Goal: Predict log(View.Count + 1) & log(Engage + 1)
using user metadata and content features.

Best Variables Selected via CV Stepwise

Positive predictors:
Follower.Count, Verified.Status, gender.amazon = Male

Negative predictors:
Likes.sum.Count, Emotion_CALM, Emotion_SAD, age, race = Black

Key Findings: Stepwise Selections for View

Summary of Omissions
Visual features removed: image_quality, Brightness, Sharpness
Facial expression: Smile
Many emotions dropped: SURPRISED, HAPPY, FEAR, CONFUSED, ANGRY, DISGUSTED
Other dropped features: sentimentality_score_0_to_1, Following.Count, gender.deepface

Basic Formula

After Stepwise
Selection

log(View.Count + 1) ~ Follower.Count + Likes.sum.Count + as.factor(Verified.Status)
 +Emotion_CALM+Emotion_SAD+age + as.factor(gender.amazon) + as.factor(race))

Key Findings: Stepwise Selections for View

Result Interpretation
About 17.75% of the variation in the log-transformed view count is explained by the model.
Follower count, verification, male label, and white race label are strong positive predictors of higher view counts.
Age, CALM/SAD emotions, and Black race label are associated with lower view counts.

Variable Estimate Interpretation

Follower.Count 0.000002447
A 1-unit increase in followers is associated with a 0.00000245 increase in
log(View.Count + 1). Though tiny in raw scale, it's statistically significant (p < 2e-
16), and meaningful over large follower changes.

Likes.sum.Count -0.00000002027 Surprisingly negative, suggests more likes are associated with slightly fewer
views, but the scale is extremely small

Verified.Status
(True)

0.7394 Verified users are expected to have ~107% more views (exp(0.7394) ≈ 2.09)
than non-verified users, holding other variables constant.

Emotion_CALM -0.00615 Presence of a calm emotion is associated with a slight decrease in log(Views) —
potentially less attention-grabbing content.

Emotion_SAD -0.009245 Stronger negative impact than CALM — sad content is less viral on average.

age -0.01884 Each additional year of age corresponds to a ~1.88% drop in expected view
count, controlling for other features.

gender.amazon
= Male

0.7345 Male-labeled faces get ~108% more views than non-male, all else equal
(exp(0.7345) ≈ 2.08).

race = Black -0.4596 Predicted to get ~36.8% fewer views compared to the base race category
(exp(-0.4596) ≈ 0.632).

race = White 0.4136 Predicted to get ~51.2% more views compared to the baseline (exp(0.4136) ≈
1.512).

Stepwise Selection Formula of View.Count

Variable Estimate Interpretation

Follower.Count 0.0000 More followers → more engagement.

Likes.sum.Count −1.576e-08 Surprisingly negative; likely due to multicollinearity (likes already
included in Engage).

Verified.Status
= True 0.5356 Verified users get more engagement.

image_quality 0.0060 Better image quality increases engagement.

Emotion_HAPPY −0.00550 Happy expressions reduce engagement.

Emotion_CALM −0.00607 Calm content underperforms.

Emotion_SAD −0.00950 Sadness significantly lowers engagement.

age −0.01892 Older users get less engagement.

gender.deepface
= Woman

−0.2524 Female-labeled faces receive less engagement.

race = White 0.3968 White race label associated with higher engagement.

Key Findings: Stepwise Selections for Engagement

Result Interpretation
The model explains about 17.8% of the variance in engagement.
Follower.Count, Verified.Status, image_quality, race = White are strong positive predictors of higher engagement
Likes.sum.Count, Emotion_HAPPY, Emotion_CALM, Emotion_SAD, age, gender.deepface = Woman, race = Black
are all negatively associated with engagement — possibly reflecting preference for exciting or controversial content.

Stepwise Selection Formula of Engage

Key Findings: Lasso Regression for View

Methods:
Lasso regression via glmnet with α = 1
10-fold cross-validation to find optimal λ
Use λ.1se (simpler model within 1 SE of best MSE)

Positive drivers:
verified status, follower count, male/white features, high image
quality

Negative drivers:
sad/angry/calm emotions, being Black or woman-labeled,
higher age

Variables Shrunk to 0
Emotion_HAPPY, Emotion_FEAR, Emotion_DISGUSTED,
Smile, latino hispanic, middle eastern
These variables did not add additional explanatory power beyond
what’s already captured by other predictors

Lasso Regression of View.Count

Key Findings: Lasso Regression for Engagement

Methods:
Lasso regression via glmnet with α = 1
10-fold cross-validation to find optimal λ
Use λ.1se (simpler model within 1 SE of best MSE)

Findings
Only the Follower.Count (1.4e-22) is retained
All other predictors (demographics, emotions, image quality) were shrunk
to zero.

Interpretation:
Lasso determined that none of the predictors added meaningful, non-
redundant information for predicting engagement.
Likely causes:

Multicollinearity: Engage includes Likes, which are also used as
predictors.
Noisy or weak signals from demographic or emotional features when
predicting Engage.

Lasso Regression of Engage

Key Findings: PCA

Goal: Reduce predictors, capture as much
variance, and remove multicollinearity from model

Methods:
PCA on 70% training data
Final evaluation on 30% held-out test set

Variables Included

Follower.Count
Likes.sum.Count
Following.Count
Verified.Status
image_quality
Brightness
Sharpness

Emotion_SURPRISED
Emotion_HAPPY
Emotion_CALM
Emotion_FEAR
Emotion_CONFUSED
Emotion_ANGRY
Emotion_SAD
Emotion_DISGUSTED

Smile
sentimentality_score_0_to_1
age
gender.deepface
gender.amazon
race

These variables are selected for performing
PCA because they have a higher likelihood
of influencing video virality.

PC1 PC2 PC3 PC4 PC5

Proportion of Variance 0.1063 0.08917 0.07499 0.06265 0.05707

Cumulative Proportion 0.1063 0.1955 0.27049 0.33314 0.39021

PC6 PC7 PC8 PC9 PC10

Proportion of Variance 0.05609 0.05505 0.04426 0.04166 0.04014

Cumulative Proportion 0.4463 0.50134 0.5456 0.58725 0.6274

PC11 PC12 PC13 PC14 PC15

Proportion of Variance 0.03946 0.03868 0.03781 0.03749 0.03643

Cumulative Proportion 0.66686 0.70553 0.74334 0.78083 0.81726

Key Findings: PCA

PCA Reults:

The PCA results show that 80% of
variance is explained by the first 15 PCs.

Therefore, we keep the first 15 PCs and will
later run regression to find their predicting
power on virality.

The first PC only explained 10.6% of the variance.

Key Findings: PCA

Scree Plot visualization of percent variance explained by PCs:

Scree plot shows that there is no single dominant
pattern.

This means the included variables are weakly
correlated or highly independent.
This result reflects the true situation because virality
is expected to be influenced by many factors except
of one underlying drive.

Key Findings: PCA
Linear regression result on View.Count using the 15 PCs stored from PCA results

Regression result shows that:
PC1, PC4, PC6, PC8, PC10 have significantly negative impact
on View.Count
PC2 & PC9 have significantly positive impact on View.Count

Out of these PCs with significant impact, PC1 has the largest
negative impact, and PC2 has the largest positive impact.

Key Findings: PCA
Linear regression result on Engage using the 15 PCs stored from PCA results

Regression result shows that:
PC1, PC3, PC4, PC8 have significantly negative impact on
Engage
PC2 & PC5 have significantly positive impact on Engage

Out of these PCs with significant impact, PC1 has the largest
negative impact, and PC2 has the largest positive impact.

Variable Loading

Verified.StatusFalse 0.388803371

Emotion_CALM 0.293366732

gender.amazonMale 0.23705927

age 0.112600577

raceblack 0.092756723

Key Findings: PCA

PC1: 10.6% of variance
 (Negative drivers)

Small account inspirational videos
made by Black creators

Variable Loading

Follower.Count 0.37352991

gender.amazonMale 0.36110377

Likes.sum.Count 0.33802407

Verified.StatusTrue 0.31564549

age 0.112600577

PC2: 8.9% of data variance
(Positive drivers)

By examining the top 5 positive loadings in PC1 and PC2, we generalized possible
underlying pattern in characteristics for viral videos.

Large account videos made by
established male creators

Model MSE R² Interpretation

Stepwise (with CV) 7.137873 0.0922 Lowest performance; weak predictive power

PCA Regression 7.009429 0.1085 Slightly better than stepwise, moderate complexity

Lasso ✅ 6.856228 0.1280 Best performance; balances accuracy and sparsity

✅ Use the Lasso Regression Model to predict View.Count

Lowest Test MSE: Lasso has the smallest prediction error.
Highest R²: It explains the most variance on unseen data (~12.8%).
Regularizatiovant predictors.
Interpretability: Keeps model sparse and focused on the strongest signals.

Comparison of Models’ Performance on 30% Test Set

Model Comparisons for Predicting View.Count

Model Test MSE Test R² Interpretation

✅ Stepwise (CV) 4.0337 0.0915 Good R² and lowest MSE among all models

PCA Regression 4.2763 0.1073 Best R², but slightly higher MSE

Lasso Regression 4.4841 0.0639
Worst performance: both lowest R² and highest MSE,

likely because it shrinks nearly all coefficients to zero,
oversimplifying the model.

Model Comparisons for Predicting Engagement

✅ Use the Stepwise selection with Cross-Validation to predict Engage

Stepwise CV performs best in terms of lowest MSE and second-highest R².
It balances predictive accuracy (lowest error) and model interpretability.
PCA Regression has the highest R², but slightly worse MSE than Stepwise.

Comparison of Models’ Performance on 30% Test Set

View - Lasso Engagement - Stepwise

Positive drivers:

verified status, follower count, male/white features,

high image quality

Negative drivers:

sad/angry/calm emotions, being black or woman,

higher age

Positive drivers:

verified status, follower count, high image quality,

white feature

Negative drivers:

Likes.sum.Count, happy/calm/sad emotions,

age, being black or woman

 Common positive drivers: verified status, follower count, high image quality, being white

 Common negative drivers: sad/calm emotions, being black or woman

Summary of Best Models for View and Engagement Prediction

Business Implications
& Recommendations

Verified Status & Follower Count Drive View & Engage
Creators with verified flags and larger follower bases
consistently receive higher views and engagement.

Image Quality Is a Significant Performance Factor
Videos with better visual clarity and quality outperform

lower‐quality ones on both reach and engagement.

Static Emotions Hurt Performance
Calm, sad, angry, and even happy tones drive fewer views

and lower engagement.

Demographic Bias Evident in Performance
“Male” and “White” individuals have higher views and
engagement; “Black” and “Woman” labels have lower.

Business Implications

Prioritize Verified, High-Follower Creators
Focus on influencers with verification flags and ≥20K followers; help promising micro-creators get verified.

Provide a Visual Toolkit for Better Visual Quality
Offer more adjustable editing functions, filters and stickers, plus small stipends for polished content.

Inspire Engaging Openings & Continue Testing
Guide creators to start with eye-catching, energetic hooks. Continue testing which emotional tones drive better
performance, and get more accurate emotions data.

Support Inclusive Amplification
Reserve budget to promote Black and female creators with paid support and creative guidance.

Recommendations for Tiktok

Thank You
for Listening !!!

R-code
tiktok$Engage <- tiktok$Share.Count + tiktok$Like.Count + tiktok$Comment.Count
clean_tiktok <- na.omit(tiktok)
set.seed(123)
train_idx <- sample(1:nrow(clean_tiktok), 0.7 * nrow(clean_tiktok))
train_data <- clean_tiktok[train_idx,]
test_data <- clean_tiktok[-train_idx,]

fit.lm_view = lm(log(View.Count+1)~Follower.Count + Likes.sum.Count + Following.Count + as.factor(Verified.Status)
 + image_quality + Brightness + Sharpness + as.factor(Smile)+ Emotion_SURPRISED+Emotion_HAPPY
 +Emotion_CALM+Emotion_FEAR+Emotion_CONFUSED+Emotion_ANGRY+Emotion_SAD+Emotion_DISGUSTED
 +sentimentality_score_0_to_1 +age + as.factor(gender.deepface) + as.factor(gender.amazon) + as.factor(race),
train_data)
summary(fit.lm_view)

fit.lm_view2 = lm(View.Count ~Follower.Count + Likes.sum.Count + Following.Count + as.factor(Verified.Status)
 + image_quality + Brightness + Sharpness + as.factor(Smile)+ Emotion_SURPRISED+Emotion_HAPPY

+Emotion_CALM+Emotion_FEAR+Emotion_CONFUSED+Emotion_ANGRY+Emotion_SAD+Emotion_DISGUSTED
 +sentimentality_score_0_to_1 +age + as.factor(gender.deepface) + as.factor(gender.amazon) + as.factor(race),
train_data)
summary(fit.lm_view2)

AIC(fit.lm_view, fit.lm_view2)
BIC(fit.lm_view, fit.lm_view2)

fit.lm_engage = lm(log(Engage +1)~Follower.Count + Likes.sum.Count + Following.Count + as.factor(Verified.Status)
 + image_quality + Brightness + Sharpness + as.factor(Smile)+ Emotion_SURPRISED+Emotion_HAPPY

+Emotion_CALM+Emotion_FEAR+Emotion_CONFUSED+Emotion_ANGRY+Emotion_SAD+Emotion_DISGUSTED
 +sentimentality_score_0_to_1 +age + as.factor(gender.deepface) + as.factor(gender.amazon) + as.factor(race),
train_data)
summary(fit.lm_engage)

Split the data into 70/30 train-test dataset

clean_tiktok <- na.omit(tiktok)
set.seed(123)
train_idx <- sample(1:nrow(clean_tiktok), 0.7 * nrow(clean_tiktok))
train_data <- clean_tiktok[train_idx,]
test_data <- clean_tiktok[-train_idx,]

fit.lm_view = lm(log(View.Count+1)~Follower.Count + Likes.sum.Count + Following.Count + as.factor(Verified.Status)
 + image_quality + Brightness + Sharpness + as.factor(Smile)+ Emotion_SURPRISED+Emotion_HAPPY

+Emotion_CALM+Emotion_FEAR+Emotion_CONFUSED+Emotion_ANGRY+Emotion_SAD+Emotion_DISGUSTED
 +sentimentality_score_0_to_1 +age + as.factor(gender.deepface) + as.factor(gender.amazon) + as.factor(race),
train_data)
summary(fit.lm_view)

Stepwise Regression

Load caret
library(caret)

Prepare full model formula
full_formula <- as.formula(log(View.Count + 1) ~
 Follower.Count + Likes.sum.Count + Following.Count + as.factor(Verified.Status) +
 image_quality + Brightness + Sharpness + as.factor(Smile) +
 Emotion_SURPRISED + Emotion_HAPPY + Emotion_CALM + Emotion_FEAR +
 Emotion_CONFUSED + Emotion_ANGRY + Emotion_SAD + Emotion_DISGUSTED +
 sentimentality_score_0_to_1 + age +
 as.factor(gender.deepface) + as.factor(gender.amazon) + as.factor(race))

Set up training control with 10-fold cross-validation
ctrl <- trainControl(method = "cv", number = 10)

R-code
Fit stepwise model using AIC as selection method via caret + MASS
set.seed(123)
stepwise_model_cv <- train(
 form = full_formula,
 data = train_data,
 method = "leapSeq", # Forward/stepwise selection
 tuneGrid = data.frame(nvmax = 1:25), # Try all subset sizes
 trControl = ctrl
)

Final model selected
best_vars <- coef(stepwise_model_cv$finalModel, stepwise_model_cv$bestTune$nvmax)
print(best_vars)

Use those variables to refit model on full training data
selected_vars <- names(best_vars)[-1] # remove intercept
stepwise_formula <- as.formula(log(View.Count + 1)~Follower.Count + Likes.sum.Count + as.factor(Verified.Status)
 +Emotion_CALM+Emotion_SAD+age + as.factor(gender.amazon) + as.factor(race))

final_stepwise_model <- lm(stepwise_formula, data = train_data)
summary(final_stepwise_model)

Predict on test set
Y_test <- log(test_data$View.Count + 1)
pred_test <- predict(final_stepwise_model, newdata = test_data)

Evaluate
mse_test <- mean((Y_test - pred_test)^2)
rsq_test <- 1 - sum((Y_test - pred_test)^2) / sum((Y_test - mean(Y_test))^2)

cat("Stepwise CV model - Test MSE:", mse_test, "\n") #7.137873
cat("Stepwise CV model - Test R²:", rsq_test, "\n") #0.09220836

lasso
library(glmnet)

Prepare X matrix
formula_lasso_view <- as.formula(log(View.Count + 1) ~
 Follower.Count + Likes.sum.Count + Following.Count + as.factor(Verified.Status)
 + image_quality + Brightness + Sharpness + as.factor(Smile)+
Emotion_SURPRISED+Emotion_HAPPY

+Emotion_CALM+Emotion_FEAR+Emotion_CONFUSED+Emotion_ANGRY+Emotion_SAD+Emotion_DISG
USTED
 +sentimentality_score_0_to_1 +age + as.factor(gender.deepface) +
as.factor(gender.amazon) + as.factor(race)
)

X_view_train <- model.matrix(formula_lasso_view, train_data)
X_view_test <- model.matrix(formula_lasso_view, test_data)

y_view_train <- log(train_data$View.Count + 1)
y_view_test <- log(test_data$View.Count + 1)

lasso_model_view_train <- glmnet(X_view_train, y_view_train, alpha = 1) # alpha = 1 for Lasso
lasso_model_view_test <- glmnet(X_view_test, y_view_test, alpha = 1) # alpha = 1 for Lasso

set.seed(123)
cv_lasso_view <- cv.glmnet(X_view_train, y_view_train, alpha = 1)

sparser model as lambda.1se uses a larger penalty (λ) than lambda.min:
simpler_lambda_lasso_view <- cv_lasso_view$lambda.1se # Within 1 SE of lowest MSE

R-code

final_lasso_view <- glmnet(X_view, y_view, alpha = 1, lambda = simpler_lambda_lasso_view)
coefficients
coefficients_lasso_view <- coef(final_lasso_view, s = simpler_lambda_lasso_view)
print(coefficients_lasso_view)

on test set
lasso_pred <- predict(cv_lasso_view, s = "lambda.1se", newx = X_view_test)

mse_lasso <- mean((y_view_test - lasso_pred)^2)
rsq_lasso <- 1 - sum((y_view_test - lasso_pred)^2) / sum((y_view_test - mean(y_view_test))^2)

mse_lasso ## 6.856228
rsq_lasso ## 0.1280279

PCA

X_vars <- c(
 "Follower.Count", "Likes.sum.Count", "Following.Count", "Verified.Status",
 "image_quality", "Brightness", "Sharpness", "Smile",
 "Emotion_SURPRISED", "Emotion_HAPPY", "Emotion_CALM", "Emotion_FEAR",
 "Emotion_CONFUSED", "Emotion_ANGRY", "Emotion_SAD", "Emotion_DISGUSTED",
 "sentimentality_score_0_to_1", "age",
 "gender.deepface", "gender.amazon", "race"
)

Build model matrix for training predictors

pca_train_matrix <- model.matrix(~ . - 1, data = train_data[, X_vars, drop = FALSE])

Fit PCA on training set only
pca_result <- prcomp(pca_train_matrix, center = TRUE, scale. = TRUE)

pca_data_train <- train_data[, X_vars]
pca_data_test <- test_data[, X_vars]

X_pca_train <- model.matrix(~ . - 1, data = pca_data_train)
X_pca_test <- model.matrix(~ . - 1, data = pca_data_test)

pca_model <- prcomp(X_pca_train, center = TRUE, scale. = TRUE)

eigenvalues <- pca_model$sdev^2
percent_variance_explained <- (eigenvalues / sum(eigenvalues)) * 100

Scree‐plot of % variance explained
barplot(percent_variance_explained,
 names.arg = paste0("PC", seq_along(percent_variance_explained)),
 main = "Scree Plot (% Variance Explained)",
 xlab = "Principal Component",
 ylab = "Percentage of Variance Explained",
 ylim = c(0, max(percent_variance_explained) + 1),
 col = "skyblue")

print(summary(pca_model))

R-code
keep the first 15 PCs (∼80%+ of variance)
num_pcs_to_keep <- 15

Project data onto PCs
train_pcs <- predict(pca_model, newdata = X_pca_train)[, 1:num_pcs_to_keep]
test_pcs <- predict(pca_model, newdata = X_pca_test)[, 1:num_pcs_to_keep]

df_pca_train <- data.frame(Y = Y_train, train_pcs)
df_pca_test <- data.frame(test_pcs)

coefficient
Fit a linear model on the 15 PCs using the training data
pca_reg <- lm(Y ~ ., data = df_pca_train)
summary(pca_reg)

on test set
pca_pred <- predict(pca_reg, newdata = df_pca_test)

mse_pca <- mean((y_view_test - pca_pred)^2)
rsq_pca <- 1 - sum((y_view_test - pca_pred)^2) / sum((y_view_test - mean(y_view_test))^2)

mse_pca # 7.009429
rsq_pca #0.1085438

engage

Weeks 1–4: regression (using Engage)
tiktok$Engage <- tiktok$Share.Count + tiktok$Like.Count + tiktok$Comment.Count

clean_tiktok <- na.omit(tiktok)
set.seed(123)
train_idx <- sample(1:nrow(clean_tiktok), 0.7 * nrow(clean_tiktok))
train_data <- clean_tiktok[train_idx,]
test_data <- clean_tiktok[-train_idx,]
Stepwise Regression

Load caret
library(caret)

Prepare full model formula
full_formula_engage <- as.formula(log(Engage + 1) ~
 Follower.Count + Likes.sum.Count + Following.Count + as.factor(Verified.Status) +
 image_quality + Brightness + Sharpness + as.factor(Smile) +
 Emotion_SURPRISED + Emotion_HAPPY + Emotion_CALM + Emotion_FEAR +
 Emotion_CONFUSED + Emotion_ANGRY + Emotion_SAD + Emotion_DISGUSTED +
 sentimentality_score_0_to_1 + age +
 as.factor(gender.deepface) + as.factor(gender.amazon) + as.factor(race))

Set up training control with 10-fold cross-validation
ctrl <- trainControl(method = "cv", number = 10)

Stepwise Engage
set.seed(123)
stepwise_model_cv_engage <- train(
 form = full_formula_engage,
 data = train_data,
 method = "leapSeq", # Forward/stepwise selection
 tuneGrid = data.frame(nvmax = 1:25), # Try all subset sizes
 trControl = ctrl
)

R-code
Final model selected
best_vars_engage <- coef(stepwise_model_cv_engage$finalModel,
 stepwise_model_cv_engage$bestTune$nvmax)
print(best_vars_engage)

Use those variables to refit model on full training data
selected_vars_engage <- names(best_vars_engage)[-1] # remove intercept
stepwise_formula_engage <- as.formula(log(Engage + 1) ~
 Follower.Count + Likes.sum.Count + as.factor(Verified.Status) +
 image_quality + Sharpness + Emotion_HAPPY + Emotion_CALM + Emotion_FEAR
 + Emotion_ANGRY + Emotion_SAD + Emotion_DISGUSTED +
 sentimentality_score_0_to_1 + age +
 as.factor(gender.deepface) + as.factor(race))

final_stepwise_model_engage <- lm(stepwise_formula_engage, data = train_data)
summary(final_stepwise_model_engage)

Predict on test set
Y_test_engage <- log(test_data$Engage + 1)
pred_test_engage <- predict(final_stepwise_model_engage, newdata = test_data)

Evaluate
mse_test_engage <- mean((Y_test_engage - pred_test_engage)^2)
rsq_test_engage <- 1 - sum((Y_test_engage - pred_test_engage)^2) /
 sum((Y_test_engage - mean(Y_test_engage))^2)

cat("Stepwise CV model - Test MSE (Engage):", mse_test_engage, "\n") #4.03368
cat("Stepwise CV model - Test R² (Engage):", rsq_test_engage, "\n") #0.09149395

Lasso engage

Lasso (using Engage instead of View.Count)
library(glmnet)

Ensure Engage is defined
tiktok$Engage <- tiktok$Share.Count + tiktok$Like.Count + tiktok$Comment.Count

Prepare formula with Engage
formula_lasso_engage <- as.formula(
 log(Engage + 1) ~ Follower.Count + Likes.sum.Count + Following.Count + as.factor(Verified.Status)
 + image_quality + Brightness + Sharpness + as.factor(Smile)+ Emotion_SURPRISED+Emotion_HAPPY
 +Emotion_CALM+Emotion_FEAR+Emotion_CONFUSED+Emotion_ANGRY+Emotion_SAD+Emotion_DISGUSTED
 +sentimentality_score_0_to_1 +age + as.factor(gender.deepface) + as.factor(gender.amazon) + as.factor(race)
)

Build design matrices for train/test
X_train_engage <- model.matrix(formula_lasso_engage, train_data)
X_test_engage <- model.matrix(formula_lasso_engage, test_data)

Create response vectors (log‐transformed Engage)
y_train_engage <- log(train_data$Engage + 1)
y_test_engage <- log(test_data$Engage + 1)

Fit Lasso models
lasso_model_engage_train <- glmnet(X_train_engage,y_train_engage,alpha = 1)

lasso_model_engage_test <- glmnet(X_test_engage,y_test_engage,alpha = 1)

set.seed(123)
cv_lasso_engage <- cv.glmnet(
 X_train_engage,
 y_train_engage,
 alpha = 1
)

R-code
Choose the “1 SE” lambda for a sparser model
simpler_lambda_lasso_engage <- cv_lasso_engage$lambda.1se

final_lasso_engage <- glmnet(
 X_train_engage,
 y_train_engage,
 alpha = 1,
 lambda = simpler_lambda_lasso_engage
)

Extract coefficients at lambda.1se
coefficients_lasso_engage <- coef(final_lasso_engage, s = simpler_lambda_lasso_engage)
print(coefficients_lasso_engage)

On the test set
lasso_pred_engage <- predict(
 cv_lasso_engage,
 s = "lambda.1se",
 newx = X_test_engage
)

mse_lasso_engage <- mean((y_test_engage - lasso_pred_engage)^2)
rsq_lasso_engage <- 1 - sum((y_test_engage - lasso_pred_engage)^2) /
 sum((y_test_engage - mean(y_test_engage))^2)

Print metrics
mse_lasso_engage #4.484075
rsq_lasso_engage #0.06387005

PCA Engage

1) Define the predictor columns for PCA
X_vars <- c(
 "Follower.Count", "Likes.sum.Count", "Following.Count", "Verified.Status",
 "image_quality", "Brightness", "Sharpness", "Smile",
 "Emotion_SURPRISED", "Emotion_HAPPY", "Emotion_CALM", "Emotion_FEAR",
 "Emotion_CONFUSED", "Emotion_ANGRY", "Emotion_SAD", "Emotion_DISGUSTED",
 "sentimentality_score_0_to_1", "age",
 "gender.deepface", "gender.amazon", "race"
)

2) Build model matrices for train/test (for PCA predictors)
pca_train_matrix_engage <- model.matrix(
 ~ . - 1,
 data = train_data[, X_vars, drop = FALSE]
)
pca_test_matrix_engage <- model.matrix(
 ~ . - 1,
 data = test_data[, X_vars, drop = FALSE]
)

3) Fit PCA on the training‐only predictors
pca_model_engage <- prcomp(
 pca_train_matrix_engage,
 center = TRUE,
 scale. = TRUE
)

4) Examine eigenvalues and percent variance explained
eigenvalues_engage <- pca_model_engage$sdev^2
percent_variance_explained_engage <- (eigenvalues_engage / sum(eigenvalues_engage)) * 100

(Optional) Scree‐plot
barplot(
 percent_variance_explained_engage,
 names.arg = paste0("PC", seq_along(percent_variance_explained_engage)),
 main = "Scree Plot (% Variance Explained) – Engage",
 xlab = "Principal Component",
 ylab = "Percentage of Variance Explained",
 ylim = c(0, max(percent_variance_explained_engage) + 1),
 col = "skyblue"
)

print(summary(pca_model_engage))

R-code ## 5) Choose how many PCs to keep (e.g., first 15 for ≈80%+ variance)
num_pcs_to_keep_engage <- 15

6) Project both train & test data onto the first 15 PCs
train_pcs_engage <- predict(
 pca_model_engage,
 newdata = pca_train_matrix_engage
)[, 1:num_pcs_to_keep_engage]

test_pcs_engage <- predict(
 pca_model_engage,
 newdata = pca_test_matrix_engage
)[, 1:num_pcs_to_keep_engage]
7) Construct new data frames for regression
df_pca_train_engage <- data.frame(
 Y_engage = Y_train_engage,
 train_pcs_engage
)

df_pca_test_engage <- data.frame(
 test_pcs_engage
)
Coeffiecient
8) Fit a linear model on the retained PCs (using training data)
pca_reg_engage <- lm(
 Y_engage ~ .,
 data = df_pca_train_engage
)
summary(pca_reg_engage)

9) Predict on the test set & compute metrics
pca_pred_engage <- predict(
 pca_reg_engage,
 newdata = df_pca_test_engage
)

mse_pca_engage <- mean((Y_test_engage - pca_pred_engage)^2)

rsq_pca_engage <- 1 - sum((Y_test_engage - pca_pred_engage)^2) /
 sum((Y_test_engage - mean(Y_test_engage))^2)

Print out MSE and R²
mse_pca_engage #4.27625
rsq_pca_engage #0.1072572

