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Business Question

Yelp Dataset
Specializing Influence Marketing

5966 restaurants

Four metropolitan areas




Q'l Regress average star rating.on the number of elite users (elite_cnt), price levels (price_level is
a categorical variable with 4 levels), metropolitan area (metro, Charlotte, Phoenix, Pittsburgh, Las
Vegas) and business age (biz_age) in days (M = 2237.367, SD =1384.987). Report output.

Call:

Im(formula = biz.stars ~ elite_cnt + price_level + metro + biz_age,
data = biz)

Residuals:
Min 1Q Median 3Q Max

-4.7119 -0.4773 0.0815 ©0.5679 1.8011

Coefficients:
Estimate Std. Error t value Pr(Gltl)

(Intercept) 3.354e+00 3.332e-02 100.649 < 2e-16 ***
elite_cnt 2.393e-03 1.990e-04 12.026 < 2e-16 ***
price_levelprice_2 2.444e-01 2.052e-02 11.908 < Z2e-16 ***
price_levelprice_3 2.084e-01 5.851e-02 3.561 0.000372 ***
price_levelprice_4 4.913e-01 9.273e-02 5.298 1.21e-07 ***
metroPhoenix_area 1.043e-01 3.08le-02 3.387 0.000710 ***
metroPittsburgh 1.291e-01 4.114e-02 3.137 0.001714 **
metroVegas_area 8.726e-02 3.221e-02 2.709 0.006770 **
biz_age -8.795e-05 7.396e-06 -11.893 < 2e-16 ***

Signif. codes: @ ‘***’ @.001 ‘**’ @.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: @.7605 on 5957 degrees of freedom
Multiple R-squared: 0.07706, Adjusted R-squared: 0.07582
F-statistic: 62.17 on 8 and 5957 DF, p-value: < 2.2e-16



Q Test the overall significance of the model by stating the null and alternative, P -

value and decision.

Call:

Im(formula = biz.stars ~ elite_cnt + price_level
data = biz)

Residuals:
Min 1Q Median 3Q Max

-4.7119 -0.4773 0.0815 0.5679 1.8011

Coefficients:

Estimate Std. Error t value
(Intercept) 3.354e+00 3.332e-02 100.649
elite_cnt 2.393e-03 1.990e-04 12.020
price_levelprice_2 2.444e-01 2.052e-02 11.908
price_levelprice_3 2.084e-01 5.851e-02 3.561
price_levelprice_4 4.913e-01 9.273e-02 5.298
metroPhoenix_area 1.043e-01 3.081e-02 3.387
metroPittsburgh 1.291e-01 4.114e-02 3.137
metroVegas_area 8.720e-02 3.221e-02 2.709
biz_age -8.795e-05 7.39e-06 -11.893

Signif. codes: @ ‘***’ @ Q001 ‘**’ 0.01 ‘*’ 0.05

Residual standard error: 0.7605 on 5957 degrees of freedom
Adjusted R-squared:

Multiple R-squared: 0.077006,
F-statistic: 62.17 on 8 and 5957 DF,

Pr(>1tl)

< Z2e-16
< 2e-16
< 2e-16
0.000372
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0.001714
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0.07582
p-value: < 2.2e-16

Ho: All regression coefficients are equal to zero (B.=B2=...=Bs=0
H.: At least one regression coefficient is not equal to zero

Decision: at least on p-value is less than 0.05.
Conclusion: Since the p-value is less than 0.05, we
reject the null hypothesis. There is sufficient evidence
to conclude that the model is statistically significant
at the 95% confidence level.



Q3 Report the estimated regression equation.

Call:
Im(formula = biz.stars ~ elite_cnt + price_level + metro + biz_age,

data = biz)
Residuals: biz.stars = 3.3540

Min 1Q Median 3Q Max
-4.7119 -0.4773 0.0815 0.5679 1.8011 + 0.002393x(elite_cnt)
Coefficients: + 0.2444x%(price_levelPrice_2)

Estimate Std. Error t value Pr(Gltl)

(Intercept) 3.354e+00 3.332e-02 100.649 < 2e-16 *** i 0,2084x(price_levelPrice_3)
elite_cnt 2.393e-03 1.990e-04 12.026 < 2e-16 ***
price_levelprice_2 2.444e-01 2.052e-02 11.908 < 2e-16 *** 4 0,4913x(price_leve[Price_4)
price_levelprice_3 2.084e-01 5.851e-02 3.561 0.000372 ***
price_levelprice_4 4.913e-01 9.273e-02 5.298 1.21e-Q7 *** - O.1043x(metroPhoenix area)
metroPhoenix_area 1.043e-01 3.081e-02 3.387 0.000710Q *** a
metroPittsburgh 1.291e-01 4.114e-02 3.137 0.001714 ** + 0,1291x(metroPittsburgh)
metroVegas_area 8.7260e-02 3.221e-02 2.709 0.006770 **
biz_age -8.795e-05 7.3%6e-06 -11.893 < 2e-16 *** & 0.08726x(metroVegas_area)
Signif. codes: @ “***’ @9.001 ‘**’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1 - 0.00008795x(b|z_age)

Residual standard error: 0.7605 on 5957 degrees of freedom
Multiple R-squared: 0.07706, Adjusted R-squared: 0.07582
F-statistic: 62.17 on 8 and 5957 DF, p-value: < 2.2e-16



Q4 what fraction of variation in average star rating is explained by the terms in
this model? Comment on the magnitude and the implication.

Im(formula = biz.stars ~ elite_cnt + price_level + metro + biz_age,

Call:

data = biz)
Residuals:

Min 1Q Median

3Q

Max

-4.7119 -0.4773 0.0815 0.5679 1.8011

Coefficients:

(Intercept)
elite_cnt
price_levelprice_2
price_levelprice_3
price_levelprice_4
metroPhoenix_area
metroPittsburgh
metroVegas_area
bi1z_age

OOk, P A DMNNNW

Signif. codes:

Residual standard error: 0.7605 on 5957 degrees of freedom
Adjusted R-squared:

Multiple R-squared:

0.07700,
F-statistic: 62.17 on 8 and 5957 DF,

3.
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332e-02 100.
.990e-04 12
.052e-02 11
.851e-02 3
273e-02 5
.081e-02 3
.114e-02 3
.221e-02 2
.396e-06 -11

Estimate Std. Error t value
.354e+00
.393e-03
.444e-01
.084e-01
.913e-01
.043e-01
.291e-01
.726e-02
.795e-05

649
.026
.908
.5061
.298
.387
.137
. 709
.893

@ “***¥’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Pr(>Itl)

< 2e-16
< 2e-16
< 2e-16

0.000372
1.21e-07
0.000710
0.001714
0.006770

< 2e-16
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0.07582
p-value: < 2.2e-16

Multiple R-squared: 0.07706

 This means that the predictors in the model
(elite_cnt, price_level, metro, and biz_age)
collectively explain approximately 7.7% of the
variation in the restaurants’ average star ratings.

e Magnitude: 7.7% is low, indicating that while
these predictors do have a statistically
signhificant relationship with star ratings, the
majority of the variation (over 90%) remains
unexplained.

e Implication: The model needs improvement.
Adding more variables may capture a larger
portion of variability in ratings.



Q5 Are there differencesiin average star rating between price levels? Use your model
in part 1 to answer the question. State the null and alternative, P-value and decision
using the .05 level.

Call:

Im(formula = biz.stars ~ elite_cnt + price_level + metro + biz_age, Hy:  Pprice; =0, Bprice; =0,  Brice, =0
data = biz)
Ha : At least one Df .BPrice;_n /8Price3= )BPricec; 7’_'é 0
Residuals:
Min 1Q Median 3Q Max S . .
4.7110 -0.4773 0.8815 0.5679 1.8011 Decision: Because the p-values for all price-
L level coefficients are <0.05, and the overall F-
Coefficients:
Estimate Std. Error t value Pr(>Itl) test for “price” as a factor would also yield a p-
(Intercept) 3.354e+00 3.332e-02 100.649 < Ze-1b ***
elite_cnt 2.393e-03 1.990e-04 12.026 < 2e-16 *** value <0.05, reject HO.
price_levelprice_2 2.444e-01 2.052e-02 11.908 < 2e-16 *** ) ] ) o
price_levelprice 3 2.084e-01 5.851e-02 3.561 0.000372 *** Conclusion: Price level is positively correlated
price_levelprice_4 4.913e-01 9.273e-02 5.298 1.21e-07 *** . . . .
metroPhoenix_area  1.043e-01 3.081e-02 3.387 0.000710 *** with the average star rating. since price level 1
metroPittsburgh 1.291e-01 4.114e-02 3.137 0.001714 ** . .
metroVegas_area 8.726e-02 3.221e-02 2.709 0.006770 ** is the dummy variable.
biz_age -8.795e-05 7.396e-00 -11.893 < Ze-1lb ***

Among price level 2,3 and 4, price level 4 has

Slgnif. codes: @ "H7 0.601 *** 0.61 "*T0.65 7.7 0.1 7 71 the highest affect on the rating, indicating

Residual standard error: 0.7605 on 5957 degrees of freedom consumers mlght hold the belief "yOU are
Multiple R-squared: 0.07706, Adjusted R-squared: 0.07582

F-statistic: 62.17 on 8 and 5957 DF, p-value: < 2.2e-16 paylng What you get"



Q6 Does the model in part 1 provide evidence that business age affects average star
rating? State the null and alternative, P-value and decision using the .05 level.

Call:

Im(formula = biz.stars ~ elite_cnt + price_level + metro + biz_age, }1b : ﬁﬁﬁz—age =0

data = biz) Business age has no effect on average star rating.
Residuals: . .

Min 1Q Median 3Q Max Hg : '8 biz_age % 0
-4.7119 -0.4773 0.0815 0.5679 1.8011 Business age has an effect on average star ratlng.
Coefficients:

Estimate Std. Error t value Pr(>1tl)

(Intercept) 3.354e+00 3.332e-02 100.649 < 2e-10 *** . . . .
elite cnt > 3030-03 1.990e-04 12 026 < 2e-16 *** Decision: Because the p-value is <0.05, reject HO.
price_levelprice_2 2.444e-01 2.052e-02 11.908 < 2e-16 *** C | - ‘The b - , . |
price_levelprice_3 2.084e-01 5.851e-02 3.561 0.000372 *** onciusion. € DusSIness age IS negatlve y
price_levelprice_4 4.913e-01 9.273e-02 5.298 1.21e-07 *** . .
metroPhoenix_area 1.043e-01 3.081le-02 3.387 0.000710Q *** correlated with the average star ratlng'
metroPittsburgh 1.291e-01 4.114e-02 3.137 0.001714 ** . .« .: .
metroVegas_area 8.7260e-02 3.221e-02 2.709 0.006770 ** HOWEVEf, since the COEffICIEﬂt IS Only
P1z_age 78.795e705 7.396e06 ~11.893 < ze-16 T -0.00008795, the effect is nearly negligible.
Signif. codes: @ “***’ @.001 ‘**’ 90.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Residual standard error: 0.7605 on 5957 degrees of freedom
Multiple R-squared: 0.07706, Adjusted R-squared: ©.07582
F-statistic: 62.17 on 8 and 5957 DF, p-value: < 2.2e-16



Q7 Keep the number of elite users and the price levels as the only predictors on
average star ratings in the model. /Add an appropriate transformation to the model to
allow for a U-shaped effect from the number of elite users on average star rating. Use at
least two additional models (I suggest estimating log and quadratic models).

Baseline Model:

Call
Im(formula = biz.stars ~ elite_cnt + price_level, data = biz)

Residuals:
Min 10 Median 30 Max
-3.4702 -0.5000 ©.0752 ©.5591 1.7556

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 3.2443960 0.0144655 224.285 < Ze-1lb ***
elite_cnt 0.0017778 ©.0001928 9.222 < 2e-1b ***

price_levelprice_2 0.2691194 0.0206603 13.026 < 2e-1b ***
price_levelprice_3 0.2345873 0.0591306 3.967 7.36e-05 ***
price_levelprice_4 0.4995072 0.0936900 5.331 1.0le-Q7 ***

Signif. codes: @ “***’ @ Q01 “*#*’ 9. .01 ‘*’ 90.05 ‘.’ 0.1 ¢ °*
Residual standard error: @.77 on 5961 degrees of freedom

Multiple R-squared: 0.0531, Adjusted R-squared: ©.05247
F-statistic: 83.58 on 4 and 5961 DF, p-value: < 2.2e-16

Log Model:

Call:

Im(formula = biz.stars ~ log(elite_cnt + 1) + price_level, data = biz)

Residuals:
Min 1Q Median 30 Max
-2.36162 -0.48773 0.04514 0.52580 1.99267

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 3.007333 0.019142 157.103 < 2e-16 ***
log(elite_cnt + 1) 0.149115 0.007633 19.535 < Ze-16 ***
price_levelprice_2 0.190472 0.020679 9.211 < 2e-1b ***
price_levelprice_3 0.176814 0.057400 3.080 0.00208 **
price_levelprice_4 0.418729 0.091376 4.582 4.69e-06 ***

Signif. codes: @ **+** @ 961 *“*+* §.01 *** 9.05 *.” 9.1 ¢ * 1

Residual standard error: ©.7518 on 5961 degrees of freedom
Multiple R-squared: 0.09738, Adjusted R-squared: ©.09677
F-statistic: 160.8 on 4 and 5961 DF, p-value: < 2.2e-16

Quadratic Model:

Call:

Im(formula = biz.stars ~ elite_cnt + I(elite_cntA2) + price_level,
data = biz)

Residuals:
Min 1Q Median 3Q Max

-2.4809 -0.4820 0.0655 0.5490 1.7715

Coefficients:

Estimate Std. Error t value Pr(ltl)
(Intercept) 3.229e+00 1.451e-02 222.510 < Ze-16 ***
elite_cnt 3.441e-03 2.771e-04 12.418 2e-16 ***

<
I(elite_cntA2) -1.934e-06 2.320e-07 -8.312 < 2e-1lb ***
price_levelprice_2 2.455e-01 2.074e-02 11.837 < 2e-16 ***
price_levelprice_3 2.213e-01 5.882e-02 3.762 0.00017 ***
price_levelprice_4 4.369e-01 9.346e-02 4.674 3.02e-06 ***

Signif. codes: @ “***’ 9.001 “**’ 0.01 “*’ 0.05 “.” 9.1 ¢ * 1

Residual standard error: @.7657 on 5960 degrees of freedom
Multiple R-squared: @.06395, Adjusted R-squared: .06317
F-statistic: 81.44 on 5 and 5960 DF, p-value: < 2.2e-16



Q7 Keep the number of elite users and the price levels as the only predictors on
average star ratings in the model. /Add an appropriate transformation to the model to
allow for a U-shaped effect from the number of elite users on average star rating. Use at
least two additional models (I suggest estimating log and quadratic models).

. Model Predictions: Linear, Quadratic, Log, & Cubic Models
Cubic Model: g

Call: — Linear
Im(formula = biz.stars ~ elite_cnt + I(elite_cntA2) + I(elite_cntA3) + —— Quadratic
price_level, data = biz) B = Log
—— Cubic
Residuals:
Min 1Q Median 3Q Max =
-2.42984 -0.47711 0.05344 0.54236 1.96495 ® /
L &< __
Coefficients: ég '
Estimate Std. Error t value Pr(>ltl) o
(Intercept) 3.200e+00 1.465e-02 218.482 < 2e-16 *** ©
elite_cnt 6.943e-03 4.353e-04 15.949 < 2e-16 *** j%
I(elite_cntAZ) -1.517e-05 1.297e-06 -11.694 < 2e-16 *** S N -
ICelite_cntA3) 5.671e-09 5.470e-10 10.369 < 2e-16 *** £
price_levelprice_2 2.162e-01 2.075e-02 10.419 < 2e-16 *** fg
price_levelprice_3 2.113e-01 5.831e-02 3.624 0.000292 *** a
price_levelprice_4 3.990e-01 9.271e-02 4.303 1.71e-05 ***
—— o —

Signif. codes: @ “***’ 9.001 ‘**’ @.01 ‘*’ @.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: @.7589 on 5959 degrees of freedom

Multiple R-squared: ©.08054, Adjusted R-squared: 0.07962 i i | |
F-statistic: 87 on 6 and 5959 DF, p-value: < 2.2e-16 0 500 1000 1500 2000

Number of Elite Users



Q7 Keep the number of elite users and the price levels as the only predictors on
average star ratings in the model. /Add an appropriate transformation to the model to
allow for a U-shaped effect from the number of elite users on average star rating. Use at
least two additional models (I suggest estimating log and quadratic models).

. Model Predictions: Linear, Quadratic, Log, & Cubic Models
Cubic Model: g

Call: — Linear
Im(formula = biz.stars ~ elite_cnt + I(elite_cntA2) + I(elite_cntA3) + —— Quadratic
price_level, data = biz) B = Log
—— Cubic
Residuals:
Min 1Q Median 3Q Max =
-2.42984 -0.47711 0.05344 0.54236 1.96495 ® /
L &< __
Coefficients: ég '
Estimate Std. Error t value Pr(>ltl) o
(Intercept) 3.200e+00 1.465e-02 218.482 < 2e-16 *** ©
elite_cnt 6.943e-03 4.353e-04 15.949 < 2e-16 *** j%
I(elite_cntAZ) -1.517e-05 1.297e-06 -11.694 < 2e-16 *** S N -
ICelite_cntA3) 5.671e-09 5.470e-10 10.369 < 2e-16 *** £
price_levelprice_2 2.162e-01 2.075e-02 10.419 < 2e-16 *** fg
price_levelprice_3 2.113e-01 5.831e-02 3.624 0.000292 *** a
price_levelprice_4 3.990e-01 9.271e-02 4.303 1.71e-05 ***
—— o —

Signif. codes: @ “***’ 9.001 ‘**’ @.01 ‘*’ @.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: @.7589 on 5959 degrees of freedom

Multiple R-squared: ©.08054, Adjusted R-squared: 0.07962 i i | |
F-statistic: 87 on 6 and 5959 DF, p-value: < 2.2e-16 0 500 1000 1500 2000

Number of Elite Users



Q8 What potential modeling challenges might arise if we include these two additional
variables (1) total review volume (biz.rws.cnt) and 2) repeat customer frequency

(repeated_cnt)? Using appropriate diagnostic tests, demonstrate whether these concerns
are real and severe.

Call:

Im(formula = biz.stars ~ elite_cnt + price_level
biz.rws.cnt + repeated_cnt, data = biz)

Residuals:
Min 1Q Median

3Q

Max

-4.0121 -0.4640 0.0827 ©.5518 1.8102

Coefficients:

Estimate Std. Error t value
(Intercept) 3.379e+00 3.299e-02 102.403
elite_cnt -2.915e-03 5.339e-04 -5.459
price_levelprice_2 2.006e-01 2.058e-02 9.750
price_levelprice_3 2.006e-01 5.780e-02 3.471
price_levelprice_4 5.269%e-01 9.165e-02 5.749
metroPhoenix_area 5.693e-02 3.067e-02 1.856
metroPittsburgh 1.496e-01 4.066e-02 3.679
metroVegas_area 4.100e-02 3.205e-02 1.279
biz_age -9.472e-05 7.347e-06 -12.891
biz.rws.cnt 7.904e-04 1.298e-04 6.091
repeated_cnt 8.217e-03 2.233e-03 3.680
Signif. codes: 0 “***’ 9,001 ‘**’ 0.01 ‘*’ 0.05

Residual standard error: ©0.7511 on 5955 degrees of freedom
Adjusted R-squared:
F-statistic: 66.25 on 10 and 5955 DF,

Multiple R-squared: 0.1001,

+ metro + biz_age +

Pr(>1tl1)
< 2e-16
4.97e-08
< 2e-16
0.000523
9.45e-09

A ko
%k %k %k
& ok ok
*kk

% k%

0.0634560 .

0.000237
@.200833
< 2e-16
1.19e-09
0.000235

‘o' B ¢ 7 1

%k k

% %k %
* % %

% %k %

@.09861
p-value: < 2.2e-16

e New variables may correlate with existing predictors

(e.g., elite users may drive review volume).

e Test: Variance Inflation Factor (VIF)

> vif(lm_1)
GVIF Df GVIFA(1/(2*Df))
elite_cnt 1.154754 1 1.074595
factor(price_level) 1.076600 3 1.012377
factor(metro) 1.031231 3 1.005139
biz_age 1.082004 1 1.040223
> vif(lm_2)
GVIF Df GVIFACL/(2*Df))
elite_cnt 8.523774 | 1 2.919550
price_level 1.114984 3 1.018306
metro 1.075077 3 1.012139
biz_age 1.095008 1 1.046426
biz.rws.cnt |15.590018 | 1 3.948420
repeated_cnt 5.790759 1 2.406400

Result: elite_cnt and biz.rws.cnt have high VIF (>5), so

there is multicollinearity between them




Q8 What potential modeling challenges might arise if we include these two additional
variables (1) total review volume (biz.rws.cnt) and 2) repeat customer frequency

(repeated_cnt)? Using appropriate diagnostic tests, demonstrate whether these concerns
are real and severe.

Im(formula = biz.stars ~ elite_cnt + price_level + metro + biz_age +
repeated_cnt, data = biz)

Residuals:
Min 1Q Median 3Q Max

Real & Severe Option A: -4.0068 -0.4674 0.0795 0.5571 1.8076
e elite_cnt and biz.rws.cnt have high VIF (>5), so

Coefficients:
Estimate Std. Error t value Pr(zltl)
(Intercept) 3.379%+00 3.309e-02 102.114 < 2e-16 ***

Keep elite_ cht elite_cnt -3.065¢-04 3.199¢-04 -0.958 0.337996

price_levelprice_2 2.08%-01 2.059e-02 10.144 < Ze-16 ***

. . . . . ice_levelprice_3 2.08le-01 5.796e-02 3.591 @.000332 ***
there is high multicollinearity between them : Pricolovelpricet 5302001 0105002 577 8.450.00 v
Drop Diz.rws.cnt cvecilee' S Soea 220 ooz

metroPittsburgh 1.427e-01 4.077e-02 3.499 0.000470 ***

P Solution: Drop One of the CO"inear Variables metroVegas_area  5.771e-02 3.203e-02 1.802 0.071636 .

biz_age -9.616e-05 7.366e-06 -13.054 < Ze-16 ***
repeated_cnt 1.751e-02 1.635e-03 10.714 < Ze-1b ***

, _ Signif. codes: @ “***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ * 1
> vif(lm_2_elite)

GUIF DF GVIFACL/(2D)) il o e 70 2 fmn G,
elite_cnt IW il 1.744016 F-statistic: 69.07 on 9 and 5956 DF, p-value: < 2.2e-16
price_level 1.110032 3 1.017550
metro 1.057417 3 1.009348 Call:
biz_age 1.093878 1 1.045886 Im(formula = biz.stars ~ biz.rws.cnt + price_level + metro +
r'epeated_cn 1 1.756482 biz_age + repeated_cnt, data = biz)
> vif(lm_Z_r‘ws) Residgals: ‘

GVIF Df GVIFA(1/(2*Df)) Op tion B: —4.9:;; —@.4633 3?3232 0.5523 1.8?2;
biz.rws.cnt |5.563086% 1 2.358620

pl"i ce_level 1.103582 3 1.016562 1 coefficients: Estimate Std. Error t value Pr(zItl)
metro 1.048002 3 1.007845 K eep b I1Z.rws.cnt (Intercept)

|

i

3.379%+00 3.307e-02 102.178 < 2e-16 ***
repeated_cnt 5.547987

. price_levelprice_? 2.076e-01 2.050e-02 10.086 < Ze-16 ***
2.355417 Drop e,,te cht price_levelprice_3 1.866e-01 5.788e-02 3.223 0.001274 **
- price_levelprice_4 5.023e-01 9.176e-02 5.474 4.58e-0B8 *#**

metroPhoenix_area 7.484e-02 3.056e-02 2.449 0.014369 *
metroPittsburgh  1.420e-01 4.074e-02 3.487 0.000492 ***

() conclusion: Dropping biz.rws.cnt and metroVegas_area 5.475e-02 3.203e-02 1.709 0.087450 .

biz_age -9.769e-05 7.345e-06 -13.301 < Ze-16 ***

repeated_cnt 1.071e-02 2.191e-03 4.890 1.03e-06 ***

keeping elite_cnt gives.smaller VIF  better b eers 0001 e 0.0 005 < 01 ¢t 1

Signif. codes:

Residual standard error: 0.7529 on 5956 degrees of freedom

option to deal With the mUItiCOIIinearity Multiple R-squared: @.@9561, Adjusted R-squared: 0.09425

F-statistic: 69.96 on 9 and 5956 DF, p-value: < 2.2e-16



Q8 What potential modeling challenges might arise if we include these two additional
variables (1) total review volume (biz.rws.cnt) and 2) repeat customer frequency
(repeated_cnt)? Using appropriate diagnostic tests, demonstrate whether these concerns
are real and severe.

Conclusion:

e Test: Compare coefficients before/after adding e In the initial model (Im_1), the effect of elite
variables. users was confounded by omitted variables
e Results: (e.g., biz.rws.cnt), which inflated the
e elite_cnt coefficient flipped from +0.0024 (Im_1) estimate.
to -0.0029 (Im_2). e After controlling for review volume and
repeat customers in Im_2, elite users are
Coefficients: . . . .
Estimate Std. Error t value Pr(>It1) associated with lower ratings, suggesting
(Intercept) 3.354e+00 3.332e-02 100.649 < Ze-1b *** .
elite_cnt 1.990e-04 12.026 < 2e-16 *** that the true effect of elite users may be
Coefficients: critical or selective.
Estimate Std. Error t value Pr(>Itl) . .
(Intercept) 3.379e+00 3.299e-02 102.403 < 2e-16 *** e Solution: Including other Instrumental
elite_cnt -2.915e-03 | 5.339e-04 -5.459 4.97e-08 ***

variables (1V)



Q8 What potential modeling challenges might arise if we include these two additional
variables (1) total review volume (biz.rws.cnt) and 2) repeat customer frequency
(repeated_cnt)? Using appropriate diagnostic tests, demonstrate whether these concerns
are real and severe.

e Concern: Added variables may improve fit artificially.
e Test: Compare adjusted R? and AIC&BIC of Im_1 vs. Im_2

e Results:
 Im_1: Adj. R*=0.0758
e Im_2: Adj. R*=0.0986

Conclusion:

e Not model overfitting

> AIC(Im_1, 1m_2) e Im_2 improves fit (higher Adj. R? lower

df AIC
Im_1 10 13674.90 AIC & BIC), suggesting meaningful added
lm_2 1213527.95 explanatory power.
> BIC(Lm_1, 1lm_2)

df BIC

Im_1 10 13741.84
Im_2 12 13608.28



Q9 Return to the regression model you built earlier (in part 1) and rerun it using
bootstrap resampling with 1,000 iterations. Report the mean and confidence intervals of
the coefficient of elite.cnt.

n=1000
for (i in 1:n) {
#Creating a resampled dataset from the sample data coefs <- rbind(sample_coef_intercept, sample_coef_elite_cnt, sample_coef_p2Z,
sample_d = yelp[sample(l:nrow(yelp), nrow(yelp), replace = TRUE), ] sample_coef_p3, sample_coef_p4, sample_coef_Phoenix, .
#Running the regression on these data sample_coef_Pittsburgh, sample_coef_Vegas, sample_coef_biz_age)
model_bootstrap <- 1m(biz.stars ~ elite_cnt + factor(price_level) 35 (Y Eranaposes ‘the makrix
+ factor(metro) + biz_age, data=sample_d) coefs_df=t(as.data. frame(coefs))
## summary(model_bootstrap) coefs_df=as.data. frame(coefs_df)
#S5aving the coefficients
sample_coef_intercept <-
c(sample_coef_intercept, model_bootstrapicoefficients[1])

> library(dplyr)
> alpha=0.05
sample_coef_elite_cnt <- > coefs_df %%
c(sample_coef_elite_cnt, model_bootstrap$coefficients[2]) N dplyr: :summarize(mean = mean(sample_coef_elite_cnt),
+ lower = mean(sample_coef_elite_cnt) - qt(1- alpha/2, (n(Q) - 1))*sd(sample_coef_elite_cnt)/sqrt(n()),
sample_coef_pZ2 <- + upper = mean(sample_coef_elite_cnt) + qt(1- alpha/2, (n() - 1))*sd(sample_coef_elite_cnt)/sqrt(n()))

c(sample_coef_p2, model_bootstrap$coefficients[3]) mean lower upper
0.002582083 0.002538082 0.002626083
sample_coef_p3 <-
c(sample_coef_p3, model_bootstrap$coefficients[4])
##Use linear regression as a short cut to calcualte (I

1
>
>
>
sample_coef_p4 <- > # Calculate the mean and standard error

c(sample_coef_p4, model_bootstrap$coefficients[5]) > 1.model <- Im(sample_coef_elite_cnt ~ 1, coefs_df)
>
>
-

sample_coef_Phoenix <-
c(sample_coef_Phoenix, model_bootstrap$coefficients[6])

# Calculate the (I
confint(l.model, level=0.95)
2.5 % 97.5 %

sample_coef_Pittsburgh <- (Intercept) 0.002538082 0.002626083
c(sample_coef_Pittsburgh, model_bootstrap$coefficients[7])

Samp.tE;;;;{;fzgzz_:;gas, model_bootstrap$coefficients[8]) m ea n : 0. 002582083
Sampl&ﬁ:g&ii:ﬁzi::age , model_bootstrap$coefficients[9]) 95% c I : [0 ° 0025 38082, 0 ° 002626083]

}

coefs <- rbind(sample_coef_intercept, sample_coef_elite_cnt, sample_coef_p2,
sample_coef_p3, sample_coef_p4, sample_coef_Phoenix,
sample_coef_Pittsburgh, sample_coef_Vegas, sample_coef_biz_age)



Q10 compare the average starratings across different price levels directly, using
descriptive statistics and confidence intervals without relying on regression or other
modeling assumptions. Report the output and visualize the differences with a plot of
average star ratings (y axis) by price levels (x axis).

price_level n mean_star sd_star se_star t_val ci_lower ci_upper
price_1 2887 3.206 ©0.886 0.0165 1.9 3.23 3.29
price_2 2823 3.56 0.655 0.0123 1.9 3.54 3.59
price_3 186 3.59 0.629 0.04061 1.97 3.50 3.68
price_4 70 3.85 0.721 0.0862 1.99 3.68 4.03

Trend: Higher price levels have higher mean star ratings.

e price_1 has the lowest mean rating (3.26).

e price_2 (3.56) and price_3 (3.59) have fairly close means and overlapping confidence intervals. Further testing is
needed to tell if there's a significant difference between them.

e price_4 (3.85) has the highest mean rating and a wider interval. Its range does not fully overlap with the lower

groups’ intervals, suggesting.it is indeed higher on average.



Q10 Compare the average starratings across different price levels directly, using
descriptive statistics and confidence intervals without relying on regression or other
modeling assumptions. Report the output and visualize the differences with a plot of
average star ratings (y axis) by price levels (x axis).
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Yelp Data Set
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Data Size: 5966 restaurants
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Part 1: Rental Cost Analysis

Regression 1: rental_cost on dist_destination

Call:

Observation:
Im(formula = rental_cost ~ dist_destination, data = biz)

e Distance to the nearest tourist hotspot
Residuals: has a p-value < 5%, which means it's a
Min 1Q Median 30 Max A t dict i tal t
-4.5639 -0.9157 -0.0043 0.9105 5.2672 slghiticant preaictor to rental cos
e With every 1 mile increase In

Coefficients: | dist_destination, rental cost decreases
Estimate Std. Error t value Pr(>Itl)

(Intercept) 57.533414 0.276581 208.0 <2e-16 *** by 0.54

dist_destination -0.541653 0.005344 -101.4 <2e-16 *** e The model has a p—value < 5%, meaning

this Is a model with significant predicting

Signif. codes: @ “***’ 0.001 “**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * * 1
power over rental cost

Residual standard error: 1.329 on 5964 degrees of freedom
Multiple R-squared: 0.6327, Adjusted R-squared: 0.6327
F-statistic: 1.028e+04 on 1 and 5964 DF, p-value: < 2.2e-16



Part 1: Rental Cost Analysis

Regression 2: rental_cost on dist_destination + prime_location

Call:

Im(formula = rental_cost ~ dist_destination + factor(prime_location),
data = b1iz)

Residuals:
Min 1Q Median 3Q Max

-4.1322 -0.6880 ©0.0138 0.6689 3.8873

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 27.329091 0.503229 54.308 <2e-16 ***
dist_destination 0.012338 0.009318 1.324 0.185

factor(prime_location)l 4.064373 0.061526 66.059 <2e-16 ***

Signif. codes: 0 ‘***’ @0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ' 1

Residual standard error: 1.01 on 5963 degrees of freedom
Multiple R-squared: 0.7879, Adjusted R-squared: ©.7879
F-statistic: 1.108e+04 on 2 and 5963 DF, p-value: < 2.2e-16

Observation:

dist_destination is no longer a significant
predictor, and coefficient changes from
-0.54 to 0.012

Prime_location is a significant predictor
(p-value < 5%)

Businesses in prime location pays $4.064
more rental than those not in prime
location

The model has a p-value < 5%, meaning
this is a model with significant predicting
power over rental cost



Part 1: Rental Cost Analysis

VIF on Regression 2 & DAG

> vif(lm_2)
dist_destination factor(prime_location)
5.264927 5.264927

VIF result shows moderate
multicollinearity (>5) between
destination to the nearest tourist
hotspot and prime location. We proceed
to examine the relationship between the
rental cost and these two variables.

Pipe Structure

Dist Destination

Prime_location

Rental Cost

A pipe structure explains the
confounding relationship and the
change in dist_destination’s effect after
considering prime_location.

The true predictor of rental cost is
prime location; however, distance to
tourist hotspot contributes to making a
restaurant location a prime location.
Therefore, adding prime_location
removes the false effect of
dist_destination and reveals the real
predictor.



Part 1: Rental Cost Analysis

Using drop1() to choose predictors

Model:

rental_cost ~ dist_destination + factor(prime_location)
Df Sum of Sq RSS AIC

<none> 06085.4 124.2

dist_destination 1 1.8 6087.2 124.0

factor(prime_location) 1 4453 .4 10538.8 3398.6

Dropl() results show that dropping
prime_location variable will increase residual
R-squared (RSS) and sum-squared.

This means dropping prime_location will
decrease model predictability because
there will be more unexplained variance.

Therefore, prime location is a strong predictor
of rental cost.



Part 2: Health Inspection Analysis

Regression 1: inspector_visit & dist_destination

Call:
Im(formula = inspector_visit ~ dist_destination, data = biz)

Residuals:
Min 1Q Med1ian 3Q Max
-3.5002 -0.4907 -0.40657 0©.5278 3.5370

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 4.056911 0.220373 21.132 <Z2e-16 ***
dist_destination -0.003414 0.004258 -0.802 0.423

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ ©.05 ‘.’ 0.1 * ' 1

Residual standard error: 1.059 on 5964 degrees of freedom
Multiple R-squared: 0.0001078, Adjusted R-squared: -5.987e-05
F-statistic: 0.6429 on 1 and 5964 DF, p-value: 0.4227

Observation:

e Since the p-value of the dis-destination is
greater than 0.05, we can't reject the null
hypothesis.

e there's no sgnificant relationship between
dist_destination and inspector visit.



Part 2: Health Inspection Analysis

Regression 2: inspector_visit & dist_destination + health_alarm
iInspector_visit = 0.788 + 0.068dist_destination + 1.061 health_alarm

Call:

Im(formula = inspector_visit ~ dist_destination + factor(Chealth_alarm),
data = biz) Observation:

Residuals: e After introducing the factor of
Min 1Q Median 3Q Max

health_alarm, both dist_destination and
health_alarm have a p-value less than 0.05,

-3.5605 -0.5501 -0.0894 0.6379 3.6224

Coefficients: . . .

Estimate Std. Error t value Pr(>Itl) which rejects the null hypOtheSIS.
(Intercept) 0.788295 0.270471 2.915 0.00358 ** . . .
dist_destination 0.068375 0.005146 13.287 < Ze-16 *** ° When the dIStance Of deStIﬂathnS
factor(health_alarm)l 1.060957 ©0.046308 22.911 < 2e-16 *** increased by one mi|el the inspector Visit
Signif. codes: @ ‘***° 0.001 ‘**’ 0.01 ‘*’ 0.05 .’ 0.1 ¢ ’ 1 Increased by 0.06.

Residual standard error: 1.015 on 5963 degrees of freedom * Every health alarm happened can Cause the

Multiple R-squared: 0.08101, Adjusted R-squared: @.0807 Inspector visit increased 1.06.
F-statistic: 262.8 on 2 and 5963 DF, p-value: < 2.2e-16



Part 2: Health Inspection Analysis

VIF and relationship

The model is considered a collider
because of the following factors:

Dist Destination e dist_destination is not correlated with

vif(lm_HI_2) inspector visits individually (in model 1,
dist_destination factor(health_alarm) the p-value is greater than 0.05)
1.589199 1.589199 l e After introducing health_alarm into
the model, both health_alarm and

VIF result shows there’s low to dist_destination become significant
moderate multicollinearity between Health_alarm (see model 2)
destination to the nearest tourist o This is because of the collider bias.
hotspot and health alarm. .
No further analysis needed T Thus, we should control health_alarm if we are

examining the relationship between inspector
visits and the destination to the nearest tourist
B UT Inspector_visit hotspot. It artificially creates a false association

oo between dist_destination and inspector_visit
(even if none exists).



Part 3: What Makes a Restaurant Popular?

Main effects:

Call: e For closed restaurant, each additional

Im(formula = biz.rws.cnt ~ rst.stars + factor(is_open) + rst.stars *
factor(is_open), data = biz)

star increases the number of reviews by
25.773.
e For restaurants that are open, the number

Residuals:
Min 1Q Median 3Q Max
-334.9 -97.5 -44.7 16.5 10175.4

of reviews is expected to be 123.789 fewer

Coefficients:
Estimate Std. Error t value Pr(:Itl)
(Intercept) -19,551 29.303 -0.667 ©.504655 than for CIosed restaurants.
rst.stars 25.773 8.334 3.092 0.001995 ** : .
factor(is_open)l -123.789 34.930 -3.544 0.000397 *** Ifftﬁ?fii(:tl()f\.
rst.stars:factor(is_open)l 70.470 9.936 7.092 1.47e-12 ***

e For every additional star, the increase in

Signif. codes: @ “***° 9.001 ‘**’ 90.01 ‘*’ 0.05 ‘.’ 0.1 * ’ 1 the number of reviews for open

Residual standard error: 283.1 on 5962 degrees of freedom -
Multiple R-squared: @.08532, Adjusted R-squared: @.08485 restaurants is 70'47 more than the

F-statistic: 185.4 on 3 and 5962 DF, p-value: < 2.2e-16 increase for closed restaurants.

Reputation matters more in restoring popularity.



Part 3: What Makes a Restaurant Popular?

> em.pop_4_stars
is_open emmean SE df lower.CL upper.CL
@ 83.5 7.69 5962 68.5 98.6

1 241.6 5.58 5962  230.7  252.6 Visualization of the effect

Confidence level used: ©.95

> pairsCem.pop_4_stars) > emmip(pop_interaction, factor(is_open) ~ rst.stars, CIs=TRUE,
contrast estimate SE df t.ratio p.value f At=list(rst.stars = c(1,300)
is_open@ - is_openl -158 9.5 5962 -16.634 <.0001

Mean popularity (reviews) for 4-star restaurants /

e Closed: 83.5
e Open: 241.6
e Difference: 158

200-

is_open
0

- 1

Linear prediction

100 -

Open restaurants with 4 stars have 158 more 0-

reviews than closed restaurants with the

same star rating on the average. | © O rstsas 5



Part 3: What Makes a Restaurant Popular?

> three_interaction = Im(biz.rws.cnt ~ elite_cnt* rst.stars* factor(is_open), data = biz) Main effeCtS:
> summary(three_interaction)
Call: | | | e For each additional elite Yelper, the
Im(formula = biz.rws.cnt ~ elite_cnt * rst.stars * factor(is_open),
data = biz)

number of reviews increases by 3.687 for

Residuals:
Min 10 Median 3Q Max
356,30 -35.23 1477 1517 1810.30 restaurants that are closed, assuming the
Coefficients:
Estimate 5td. Error t value Pr(=Itl)
(Intercept) -6.87582 18.96217 -0.554 0.5794.27 reStaurant has Zero Stars°
elite_cnt 3.68712 0.63983 5.763 8.7e-09 ***
rst.stars 8.82512 3.13241 2.562 0.010432 * ° g
Factor(is_open)1 0.84908 12.98768 -0.758 0.448236  For each additional star, the number of
elite_cnt:rst.stars 0.08191 9.17152 ©0.478 0.632971
elite_cnt: factor(is_open)l -1.21042 @.66575 -1.818 0.069094 . o o o
rst.stars:factor(is_open)l 11.82286 3.72197 3.177 0.001498 ** reVIeWS Increases by 8°025I assumlng the
elite_cnt:rst.stars:factor(is_open)l 0.63453 ©.17816 3.56Z2 0.000372 ***
;ignif. codes: @ “***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1 restaurant is closed and there are no elite

Residual standard error: 98.57 on 5958 degrees of freedom

Multiple R-squared: ©.8892, Adjusted R-squared: @.889 Yelpers.
F-statistic: 6828 on 7 and 5958 DF, p-value: < 2.2e-16



Part 3: What Makes a Restaurant Popular?

> three_interaction = Im(biz.rws.cnt ~ elite_cnt* rst.stars* factor(is_open), data = biz) TWO_Way Interaction:

> summary(three_interaction)

Calll:  For open restaurants, each additional star

Im(formula = biz.rws.cnt ~ elite_cnt * rst.stars * factor(is_open),
data = biz)

increases the number of reviews by

Residuals:

Min 10 Median 3Q Max
-1356.30 -35.23 -14.77 15.17 1810.30

11.82286 more than for closed restaurants.
Coefficients:
Estimate 5td. Error t value Pr(=Itl)

(Intercept) -6.07582 10.96217 -0.554 0.579427
elite_cnt 3.68712 0.63983 5.763 8.7e-09 ***
rst.stars 8.02512 3.13241 2.562 0.010432 * o o
factor(is_open)l -9.84998 12.98768 -0.758 0.448236 Three_way InteraCtlon°
elite_cnt:rst.stars 0.08191 ©.17152 0.478 0.632971
elite_cnt: factor(is_open)l -1.21042 @.66575 -1.818 0.069094 .
rst.stars:factor(is_open)l 11.82286 3.72197 3.177 0.001498 ** - For open reStaurantsl the number Of
elite_cnt:rst.stars:factor(is_open)l @.63453 ©.17816 3.56Z2 0.000372 ***
Signif. codes: © ‘***’ 0.001 “**’ 0.01 ‘*’ 0.05 .’ 0.1 ¢’ 1 reviews increases by 0.63453 more for
Residual standard error: 98.57 on 5958 degrees of freedom o, o .
Multiple R-squared: ©.8892, Adjusted R-squared: @.889 eaCh addltlonal ellte Yelper, fOr eaCh

F-statistic: 6828 on 7 and 5958 DF, p-value: < 2.2e-16

additional star.



Part 3: What Makes a Restaurant Popular?

The difference in popularity between the
restaurants in good operation status with
100 elite reviews but with average star
rating of 4 and 5

> em_4.5 <- emmeans(three_interaction, ~ rst.stars | elite_cnt + is_open,
+ at = list(elite_cnt = 100, is_open = 1, rst.stars = c(4, 5)))
> em_4.5

elite_cnt = 100, is_open = 1:
rst.stars emmean SE df lower.CL upper.CL
4 598 2.69 5958 592 603
5 689 6.13 5958 677 701

Confidence level used: 0.95

> pairs(em_4.5) # Calculates the difference

elite_cnt = 100, is_open = 1:

contrast estimate SE df t.ratio p.value
rst.stars4 - rst.stars5 -91.5 4.62 5958 -19.810 <.0001

The emmeans function shows the mean
popularity (biz.rws.cnt) when:

e with 100 elite reviews: elite_cnt =100

e in good operation status: is_open =1

e average star rating of 4 and 5: rst.stars =
c(4, 5)

The mean review counts of 4-star
restaurants is 598 and 689 for 5-star
restaurants.

The difference in popularity (biz.rws.cnt)
between 4-star and 5-star restaurants is 91.5.



Part 3: What Makes a Restaurant Popular?

The difference in popularity between the restaurants in good operation status with
average star rating of 4 and 5, under different number of elite reviews

# Create an emmGrid object

em_grid <- emmeans(three_interaction, ~ elite_cnt | rst.stars,

Visualization of the effect

# Plot elite_cnt effects conditioned on star rating

at = list(
elite_cnt
rst.stars
is_open =

]

=

> em_grid
rst.stars = 4;

elite_cnt emmean SE  df lower.CL upper.CL

@ ©63.5 2.15 5958
20 170.3 1.98 5958
40 277.2 1.95 5958
60 384.0 2.08 5958
80 490.9 2.34 5958

100 597.7 2.69 5958

rst.stars = 5:
elite_cnt emmean SE df

@ 83.3 3.73 5958
20 204.5 3.47 5958
49 325.7 3.67 5958
60 446.8 4.27 5958
80 568.0 5.12 5958

100 689.2 6.13 5958

Confidence level used: 0.95

29,2
166.4
273.3
379.9
486.3
592.4

lower.CL upper.CL

76.0
197.7
318.5
438.5
558.0
Bf7 2

seq(@, 100, by = 20), # Range of elite Yelpers > emmlp(em—grld! rst.stars ~ e.L'l.te_Cﬂt)

c(4, 5), # Compare 4 vs. 5 stars
# Only open restaurants

600 -

67.7
174.2
281.90
388.1
495.4
003.0

rst.stars

Linear prediction

90.6 2004
211.3
332.9
455.2
578.1
701.2

elite_cnt



Part 3: What Makes a Restaurant Popular?

Key Implications:
Y e Reputation & Open Status Synergy: High-rated (4-5 star) open
' restaurants gain significantly more reviews, especially when combined
: with elite Yelpers. The interaction between stars and operational status
| is critical—closed restaurants see minimal benefits from reputation
5 / alone.
N | e Elite Yelper Amplification: Elite influencers disproportionately boost
popularity for open, high-rated restaurants (e.g., 5-star restaurants
with 100 elite reviews get ~90 more reviews than 4-star counterparts).

dict

Business Suggestions:
e Target Campaigns: Offer perks (e.g., “Elite Dining Events”) to encourage
| ’ 4-star venues to improve to 5-star and maximize review growth
! e Promote Star Ratings: Encourage restaurants to improve ratings (e.g.,
service training), as each star increase drives about 8 more baseline
reviews, and even more with elite Yelpers.
e Operational Priority: Highlight open status in marketing (e.g., "Now
Open!") to leverage its interaction with reputation.

redic



Thank you
very much!




Appendix

Part 1: Rental Cost Analysis

Im_1=Im(rental _cost ~ dist_destination, data=biz)
summary(Im_1)

Im_2 = Im(rental_cost ~ dist_destination + factor(prime_location), data=biz)
summary(Im_2)

library(car)
vif(Im_1)
vif(lm_2)

anova(lm(rental_cost ~ dist_destination + factor(prime_location), biz))
anova(lm(rental_cost ~ factor(prime_location) + dist_destination, biz))
dropl(Im(rental_cost ~ dist_destination + factor(prime_location), biz))



Appendix

Part 2: Health Inspection Analysis

Im_HI_1 = Im(inspector_visit ~ dist_destination, data=biz)
summary(Im_HI_1)

Im_HI_2 = Im(inspector_visit ~ dist_destination + factor(health_alarm), data=biz)
summary(Im_HI_2)

vif(Im_HI_1)
vif(Im_HI_2)



Appendix

Part 3: What Makes a Restaurant Popular?

# Interaction effect
Im_pop = Im(biz.rws.cnt ~ rst.stars + factor(is_open) + rst.stars*factor(is_open), data=biz)
summary(Im_pop)

# Compare means of open vs. closed of 4-star restaurants
em.pop=emmeans(pop_interaction, "is_open")
em.pop_4_stars=emmeans(pop_interaction, "is_open’, at = list(rst.stars = 4))
em.pop_4_stars

pairs(em.pop_4_stars)

## visualization

quantile(biz$rst.stars)

emmip(pop_interaction, factor(is_open) ~ rst.stars, Cls=TRUE,
at=list(rst.stars = c(1,5)))



Appendix
Part 3: What Makes a Restaurant Popular?

# three_way_interaction
three_interaction = Im(biz.rws.cnt ~ elite_cnt* rst.stars* factor(is_open), data = biz)
summary(three_interaction)

# Compare differences

library(emmeans)

em_4.5 <- emmeans(three_interaction, ~ rst.stars | elite_cnt + is_open,
at = list(elite_cnt = 100, is_open = 1, rst.stars = c(4, 5)))

em_4.5

pairs(em_4.5) # Calculates the difference

## visualization
em_grid <- emmeans(three_interaction, ~ elite_cnt | rst.stars,
# Plot elite_cnt effects conditioned on star rating

at = list(
elite_cnt = seq(0, 100, by = 20), # Range of elite Yelpers
rst.stars = c(4, 5), # Compare 4 vs. 5 stars
is_open =1 # Only open restaurants
)
)
em_grid

# visualization
emmip(em_grid, rst.stars ~ elite_cnt)



AW4

Group 9: Grace Chen, Vanessa
Chen, Amanda Lee, Sheryl Xu



Part 1: Factors Influencing Elite Review Attraction

1.1 Use binary logistic regression to predict has_elite (the presence of at least one elite review).

Call: Interpretation:
glm(formula = has_elite ~ rst.stars + price_level, family = binomial, . .
data = biz) e rst.stars: For each increase in restaurant
Coefficients: stars, the log-odds of attracting an elite
Estimate Std. Error z value Pr(>lzl)
(Intercept) 1.14889 0.17058 ©.735 1.64e-11 *** review increase by 0.26793 (odds ratio
rst.stars 0.26793 0.05187 5.165 2.40e-07 ***
price_levelprice_2 0.23721 0.08981 2.641 0.00826 ** . o
price_levelprice_3 0.58469 0.30487 1.918 0.05513 . Increases by 30'7 /°)°

price_levelprice_4 0.63569 ©.51985 1.223 0.22139

e price_level. compared to price level 1,

dd . > exp(coef(glm.model)[2]) price level 2's log-odds of attracting an
= s ratio: rst.stars . . . .
1.307256 elite review increase by 0.23 (odds ratio

> exp(coef(glm.model)[3])

price_levelprice_2
1.267708

> exp(coef(glm.model)[4])

price_levelprice_3
1.794428

> exp(coef(glm.model)[5])

price_levelprice_4
1.888324

increases by 26.8%).



Part 1: Factors Influencing Elite Review Attraction

1.2 The likelihood of attracting elite reviews varies between different price levels.

> emmeans(glm.model, ~ price_level, type="response")

price_level prob

price_1 @.887 0.00600 Inf
price_2 @.909 0.00548 Inf
price_3 0.934 0.01840 Inf
price_4 0.937 0.03040 Inf

SE df asymp.LCL asymp.UCL
@.875 0.899
0.898 0.919
0.887 0.962
0.844 0.976

Confidence level used: 0.95
Intervals are back-transformed from the logit scale

> pairs(emmeans(glm.model, ~ price_level, type="response"), reverse = T)

contrast odds.ratio SE df null z.ratio p.value
price_2 / price_1 1.27 0.114 Inf 1 2.641 0.0411
price_3 / price_1l 1.79 0.547 Inf 1 1.918 0.2204
price_3 / price_2 1.42 0.433 Inf 1 1.135 0.6676
price_4 / price_l 1.89 0.982 Inf 1 1.223 0©.6123
price_4 / price_2 1.49 0.775 Inf 1 @.766 0.8697
price_4 / price_3 1.05 0.627 Inf 1 ©0.086 ©.9998

P value adjustment: tukey method for comparing a

Tests are performed on the log odds ratio scale

family of 4 estimates

Interpretation:

e emmeans: Higher price level have slightly
higher probabilities of receiving elite
reviews, with price level 4 having the
highest probability (0.937).

e price_2 [ price_1: Odds ratio of 1.27, with
a p-value < 0.05. Restaurants with
price_2 have 27% higher odds of
attracting elite reviews compared to
price_1(the cheapest tier), holding stars
constant.

e All other pairs are not statistically

significant, with p values all > 0.05.



Part 1: Factors Influencing Elite Review Attraction

1.3 restaurant’s location and potential health concerns

Call:

glm(formula = has_elite ~ rst.stars + price_level + factor(prime_location) +
dist_destination + factor(health_alarm), family = binomial,

Estimate Std. Error z value Pr(>lzl)

data = biz)

Coefficients:

(Intercept) 0.13033 1.77543
rst.stars 0.26804 @.85187
price_levelprice_2 0.23818 0.08984
price_levelprice_3 0.58158 @.30497
price_levelprice_4 @.63827 ®.51992
factor(prime_location)l @.10811 @.20138
dist_destination 0.01863 @.83272

factor(health_alarm)1 @.09184 ®.15315

0.873
5.167
2.651
1.9@7
1.228
@.537
0.569
0.600

@.94148
ZoSrec et
0.00802 **
0.05652 .
@.21959
@.59135
@.56922
@.54872

Signif. codes: @ “***° 9. 001 ‘**’ 9.01 ‘*’ .05 *.” @.1 * * 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3941.8 on 5965 degrees of freedom
Residual deviance: 3895.4 on 5958 degrees of freedom
AIC: 3911.4

Number of Fisher Scoring iterations: 5

odds ratio

> exp(coef(glm.model2)[2])
rst.stars
1.3074
> exp(coef(glm.model2)[3])
price_levelprice_2
1.268937
> exp(coef(glm.model2)[4])
price_levelprice_3
1.788857
> exp(coef(glm.model2)[5])
price_levelprice_4
1.893207

> exp(coef(glm.model2)[4])
price_levelprice_3
1.788857
> exp(coef(glm.model2)[5])
price_levelprice_4
1.893207
> exp(coef(glm.model2)[6])
factor(prime_location)l
1.114176
> exp(coef(glm.model2)[7])
dist_destination
1.018801
> exp(coef(glm.model2)[8])
factor(health_alarm)l
1.296193

Interpretation:

e rst.stars: for one increase in the restaurant’s star
rating, the log-odds of receiving an elite review
increase by 0.26804 (odds ratio increase by
30.7%) compared to the price level 1. (p<0.05)

e price level 2: for restaurants with price level 2, the
log-odds of receiving an elite review increase by
0.23818 (odds ratio increase by 26.8%) compared
to the price level 1. (p<0.05)

e prime location, distance to a destination, health
alarm: not significant (p>0.05), meaning no

substantial impact on elite review likelihood.



Part 1: Factors Influencing Elite Review Attraction

1.4 Model 2 provides a better explanation of which restaurants attract elite reviews?
Likelihooa ratio tési

Model 1: has_elite ~ rst.stars + price_level
Model 2: has_elite ~ rst.stars + price_level + factor(prime_location) +
dist_destination + factor(Chealth_alarm)
#Df LogLik Df Chisq Pr(>Chisq)
1 5 -1948.0
2 8 -1947.7 3 0.0384 0.8876

HO: The additional predictors do not improve the model fit. Model 1is as good as Model 2.
H1: The additional predictors improve the model fit. Model 2 provides a better fit than Model 1.

Since p value > 0.05, we cannot reject HO. While Model 2 has a slightly higher log-likelihood
(-1947.7 compared to -1948.0), the difference is very small. Therefore, we do not have enough
evidence to say that adding the predictors improve the model fit.

Model 1is as good as Model 2, so we recommend using Model 1 for predicting whether a restaurant
attracts elite reviews because of its simplicity.



Part 2: Elite Reviews & Price Level

2.1 Pricing strategy and its affect on attracting elite reviewers.

Dependent variable: Exponentiate coefficients yields RRR values.
T > rrrs <- exp(coef(multinom.model))
price_2 price_3 price_4 > print(rrrs)

(L (2) 3 (Intercept) factor(has_elite)l
“““““““““““““““““““““““““““ price_2 0.72965116 1.386147
factorChas_elite)l 0.327*%**  Q.674** 0.803 price_3 0.03488332 1.961486

(0.088) (0.304) (0.518) price_4 0.01162797 2.231997
Constant -@0.315%** -3 356**%* -4 454%%* . . . .
(0.083) (0.294) (0.503) e Restaurants with elite reviews have 38.61% higher

relative risk of being price-level 2 restaurants than

--------------------------------------------------- price-level 1 restaurants.

Akaike Inf. Crit. 10,320.980 10,320.980 10,320.980 e Restaurants with elite reviews have 96.15% higher
relative risk of being price-level 3 restaurants than
price-level 1 restaurants.

e Restaurants with elite reviews have 123.20% higher
relative risk of being price-level 4 restaurants than
price-level 1 restaurants; however, this difference is
not statistically significicant.

Note: *p<@.1l; **p<0.05; ***p<0.01




Part 2: Elite Reviews & Price Level

2.2 The probability of being in each price level when there are elite reviews.

> emmip(multinom.model, has_elite ~ price_level, mode="prob")
> #pairwise comparisons

> pairs(emmeans(multinom.model, ~ has_elitelprice_level, mode="prob"))

price_level = price_1: k\\\\\\
contrast estimate SE df t.ratio p.value .
has_elite@ - has_elitel 0.08813 0.02120 6 4.158 0.0060

04-

price_level = price_2:
contrast estimate SE df t.ratio p.value
has_elite@ - has_elitel -0.06950 0.02100 6 -3.303 0.0164

has_elite
- 0

- 1

Linear prediction

price_level = price_3:

contrast estimate SE df t.ratio p.value -t

has_elite@® - has_elitel -0.01285 0.00611 6 -2.102 0.0802
price_level = price_4:
contrast estimate SE df t.ratio p.value
has_elite@ - has_elitel -0.00578 0.00359 6 -1.608 0.1590 0.0-

price 1 price 2 price 3 price 4
Levels of price_level

Restaurants with elite reviews are: : : : : :
Having elite reviews most noticeably shifts the

ot g : : :
e 8.81% significantly less likely to be in price level 1. likelihood of restaurants being in price level 1

of _t g : : :
e 6.95% significantly more likely to be in price level 2. to price lsvel 2, although there are increasesin

. . . L
1.28% more likely to be in price level 3. probability of being in price level 3 and 4, the

e 0.57% more likely to be in price level 4. difference is slight



Part 2: Elite Reviews & Price Level

2.3 Business implications and marketing strategies

price_level = price_l:

has_elite prob SE
® 0.56301 0.02010
1 0.47488 0.00682

price_level = price_2:

has_elite prob SE
© 0.41080 0.01990
1 0.48030 0.00683

price_level = price_3:

has_elite prob SE
@ 0.01964 0.00561
1 0.03249 0.00242

price_level = price_4:

has_elite prob SE
@ 0.00655 0.00326
1 0.901232 0.00151

Confidence level used: ©0.95

The multinomial regression analysis shows that has_elite is a partially good
predictor for price_level.

df lower.CL upper.CL  ® Restaurants with elite reviews are less likely to be in the cheaper price
6 0.51391 0.6121 . . . . . .
6 045819 0. 4916 range (prlce level 1), and more likely to be in the mid to high price ranges
(price level 2 and 3).

e Price level 2 is the most probable level with elite reviews (48%).
df lower.CL upper.CL
6 0.36210 ©0.4595

6 0.46359 0.4970

df lower.CL upper.CL  Bysijness implications for restaurants:

6 0.00590 0.0334 . : : : :

6 0.02656 ©0.0384 e Higher-range restaurants should leverage elite reviews in promotional
content to signify quality and justify price range.

df lower.CL upper.CL e |f a restaurant is targeting a specific price range, attracting elite reviews
6 -0.00144 0.0145

6 0.00864 0.0160 can help them achieve their positioning.

e Premium restaurants (price level 4) may attract elite reviews, but lack
of statistic significance suggest that they need extra branding and
marketing effort to justify high price range.



Part 3: Further Exploration with Ordinal Logistic Regression

3.1 Ordinal logistic regression

> biz$price.f=as.factor(biz$price_level)
> biz$has_elite.f=as.factor(biz$has_elite)

> ordinal.model <- polr(price.f~ has_elite.f, data = biz, Hess = TRUE)
> summary(ordinal .model)

Call:

polr(formula = price.f ~ has_elite.f, data = biz, Hess = TRUE)

Coefficients:
Value Std. Error t value
has_elite.fl 0.3644 0.08487 4.294

Intercepts:

Value Std. Error t value
price_llprice_2 0.2626 0.0806 3.2586
price_2lprice_3 3.4369 0.1007 34.1196
price_3lprice_4 4.7663 0.1433 33.2575

Residual Deviance: 10309.67
AIC: 10317.67

> #The summary function does not return p-values for the coefficients,
> #so we calculate them.

> ctable <- coef(summary(ordinal .model))

> p <- pnorm(abs(ctable[, "t wvalue"]), lower.tail = FALSE) * 2

> ctable <- cbind(ctable, "p value" = p)

> ctable

Value Std. Error t value p value
has_elite.f1 0.3643964 0.08486986 4.293590 1.758066e-05
price_llprice_2 0.2625662 0.08057598 3.258616 1.119569e-03
price_2lprice_3 3.4368802 0.10073035 34.119609 3.776602e-255
price_3lprice_4 4.7662881 0.14331471 33.257494 1.590669e-242

Key coefficient for has_elite.flis:
 Estimate = 0.3644
e Standard Error = 0.08487
e p-value =1.76e-05 (<0.05)

A positive coefficient (B = 0.3644) means elite-reviewed
restaurants have:
e Lower odds of being in lower price levels (< price_1, <
price_2, etc.)
e Higher odds of being in higher price levels (2 price_2, 2
price_3, etc.)

Odds Ratio = €"3%%* ~ 1.44

Elite-reviewed restaurants have 44% higher odds (OR = 1.44)
of being in a higher price category than those without elite

reviews, at every price threshold.




Part 3: Further Exploration with Ordinal Logistic Regression

3.2 Interpret the odds ratios of being at or below each price level (the intercepts)

> biz$price.f=as.factor(biz$price_level)
> biz$has_elite.f=as.factor(biz$has_elite)

> ordinal .model <- polr(price.f~ has_elite.f, data = biz, Hess = TRUE)

> summary(ordinal .model)
Carl:
polr(formula = price.f ~ has_elite.f, data = biz, Hess = TRUE)

Coefficients:
Value Std. Error t value
has_elite.fl 0.3644 0.08487 4.294

Intercepts:

Value Std. Error t value
price_llprice_2 0.2626 0.0806 3.2586
price_2lprice_3 3.4369 0.1007 34.1196
price_3lprice_4 4.7663 0.1433 33.2575

Residual Deviance: 103@9.67
AIC: 10317.67

The high odd-ratio is because that the dataset
contains very few high-price-level restaurants (e.g,,
price_3 and especially price_4), then: Most
restaurants fall into price_1 or price_2, and

The model learns that the cumulative probability of
being in a low price level is very high.

Intercept Odds
Threshold () P Ratio Interpretation
« = exp(ax)
Restaurants without elite reviews
. o L :

pr!ce_1 | 0.2626 ~1.30 ha.ve 30% higher odd§ of being

price_2 price_1 or lower (vs. price_2 and
above)

Restaurants without elite reviews
pr!ce_2 | 34369 = 3109 haye v.ery hlgh odds ( ~ 31 times) of
price_3 being in price level 2 or below (vs. 3

or 4).

Restaurants without elite reviews
pr!ce_3 | 47663 ~117.63 h.ave extrem.ely.hlgh odds (~ 118
price_4 times) of being in price level 3 or

below (vs. price level 4).




Part 3: Further Exploration with Ordinal Logistic Regression

3.3 the difference in predicted probabilities of being at price_level 4

> emmeans(ordinal .model, ~ has_elite.flprice.f, mode = "prob")
price.f = price_1:

has_elite.f prob SE df asymp.LCL asymp.UCL

] 0.56527 0.01980 Inf 0.52646 0.6041

1 0.47456 0.00681 Inf 0.46121 0.4879

S

orice.f = price 2: Difference in probabilities

has_elite.f — prob — SE df asymp.LCL asymp.UCL =P(price_4 has_elite=1)-P(price_4 has_elite=0)
0 0.40357 0.01760 Inf ©0.36917  0.4380

1 0.48118 0.00674 Inf ©0.46797  0.4944 =0.01211-0.00844
price.f = price_3: =0.00367

has_elite.f prob SE df asymp.LCL asymp.UCL

0 0.02272 0.00237 Inf 0.01808  0.0274

1 0.03215 0.00233 Inf ©0.02759  0.0367

price.f = price_4:

has_elite.f prob SE df asymp.LCL asymp.UCL
0 0.00844 0.00120 Inf ©.00609 0.0108
1 0.01211 0.00144 Inf ©0.00928 0.0149

Confidence level used: 0.95



Part 3: Further Exploration with Ordinal Logistic Regression

3.4 Comparison between ordinal and multinomial logistic regression

: Multinomial Ordinal
: Elite v.s. . .. .- .-
Price Level , Logistice Logistice
Non-elite i i
Regression | Regression
Elite 0.47488 0.47456 elite lower
price_1 than non-
Non-Elite 0.56301 0.56527 elite
Elite 0.4803 0.48118 elite higher
price_2 than non-
Non-Elite 0.4108 0.40357 elite
Elite 0.03249 0.03215 elite slightly
price_3 higher than
Non-Elite 0.01964 0.02272 non-elite
Elite 0.01232 0.01211 elite slightly
price_4 higher than
Non-Elite 0.00655 0.00844 non-elite

Both ordinal and multinomial logistic
regression models show consistent
patterns in how elite reviews (has_elite)
relate to restaurant price level:

e Restaurants with elite reviews
(has_elite = 1) are more likely to be in
higher price categories, particularly
price_2, price_3, and price_4, although

the effect weakens for price level 4.



Part 3: Further Exploration with Ordinal Logistic Regression

3.4 Comparison between ordinal and multinomial logistic regression

Multinomial logistic regression Ordinal logistic regression
> emmip(multinom.model, has_elite ~ price_level, mode="prob") > emmip(ordinal.model, has_elite.f~ price.f, CIs = T, mode = "prob")
06-
ay 0.4-
S S
% has elite g has_elite.f
© 1 ® - 1
D £
= 5
0.2-
0.2-
0.0-
X X : X 0.0-
price_1 price_2 price_3 price_4
Levels of price_level pricle_1 pric'e_2 pricle_?; pricle_4

Levels of price.f



Part 3: Further Exploration with Ordinal Logistic Regression

3.4 Which model to choose?

e p-value = 0.72 > 0.05, we fail to reject the

Use the brant test is used to test the parallel null hypothesis. This means the parallel

regression assumption of ordinal logistic regression. regression assumption holds: the

relationship between has_elite and the

> brant(ordinal .model) cumulative odds of being in a higher price

-------------------------------------------- category is consistent across thresholds.

Test for X2 df probability

omnibus 0.65 2 Q.72 The ordinal logistic model is more appropriate:
has_elite.fl1  0.65 2 0.72 e The parallel regression assumption holds
-------------------------------------------- holds (validated by the Brant test),

H@: Parallel Regression Assumption holds * Price levels are naturally ordered (e.g.,

price_1< price_2 < price_3 < price_4
e Ordinal model offers better interpretability

and efficiency (as shown earlier)



Part 3: Further Exploration with Ordinal Logistic Regression

Data Insight:

e Restaurants with elite reviews are significantly less likely to be in
the cheapest tier (price_1) and more likely to occupy mid-to-high
tiers (price_2—price_4).

e The largest shift occurs in price_2, where elite-reviewed
restaurants have a 48% probability of appearing—making it the

most common category for elite-affiliated venues.




Yelp’'s Role:
e Enhance transparency by showing elite review distribution
across price tiers and debunking the myth that elite
O‘I‘ feedback = high cost.
e Yelp might offer filters based on elite reviewer presence
across price tiers, helping users find high-value options.

Strateglc . Restaurant Actions:
Recommendations o Attracting elite reviewers may enhance reputation but
does not strongly justify price increases—especially in
02 higher tiers where elite presence diminishes.
o

e Since elite reviewers are more active at lower price
levels, affordable restaurants can leverage this by
promoting elite feedback to drive traffic and trust.

e Mid-tier establishments (price_2) should actively
encourage elite reviews (e.g., through exceptional service
or loyalty programs) to capitalize on this demand shift.



Thank you
very much!




Appendix

Part 1:

HHEH QL1
biz$has_elite = ifelse(biz$elite_cnt > O, 1, O)

glm.model=glm(has_elite ~ rst.stars + price_level, data=biz, family=binomial) ### Q1.3
str(biz)
summary(glm.model) glm.model2=glm(has_elite ~ rst.stars + price_level + factor(prime_location)
+ dist_destination + factor(health_alarm), data=biz, family=binomial)
coef(glm.model)[2] summary(glm.model?2)
exp(coef(glm.model2)[6])
exp(coef(gim.model)[2]) exp(coef(glm.model2)[7])
exp(coef(glm.model)[3]) exp(coef(glm.model2)[8])
exp(coef(glm.model)[4])
exp(coef(glm.model)[5]) ## Ql4
## Likelihood ratio test (LRT) for modell and model2
HH#H Q1.2 install.packages(‘Imtest")
library(emmeans) library(Imtest)
emmeans(glm.model, ~ price_level) Irtest(glm.model, glm.model2)

emmeans(glm.model, ~ price_level, type="response")
pairs(emmeans(glm.model, ~ price_level, type="response”), reverse = T)

pairs(emmeans(glm.model2, ~ metro, type="response”), reverse = T)



Appendix

Part 2:

#H# Q2

## multinomial logistic regression

#install.packages('nnet")

library(nnet)

multinom.model=multinom(price_level ~ factor(has_elite),
data=biz, maxit=1000)

summary(multinom.model)

install.packages("stargazer")
stargazer:stargazer(multinom.model, type = "text")

# Relative risk ratio (RRR): exponentiate the multinomial logit coefficients
rrrs <- exp(coef(multinom.model))
print(rrrs)

library(emmeans)
emmeans(multinom.model, ~ has_elite|price_level, mode="latent") #logit
emmeans(multinom.model, ~ has_elite|price_level, mode="prob") #probability

#pairwise comparisons
pairs(emmeans(multinom.model, ~ has_elitelprice_level, mode="prob"))

emmip(multinom.model, has_elite ~ price_level, mode="prob") #probability



Appendix

Part 3:

H## Q3

##Ordinal logistic regression
library(MASS)
biz$price.f=as.factor(biz$price_level)
biz$has_elite.f=as.factor(biz$has_elite)

ordinal.model <- polr(price.f~ has_elite.f, data = biz, Hess = TRUE)
summary(ordinal.model)

#The summary function does not return p-values for the coefficients,
#so we calculate them.

ctable <- coef(summary(ordinal.model))

p <- pnorm(abs(ctable], "t value"]), lower.tail = FALSE) * 2

ctable <- cbind(ctable, "p value" = p)

ctable

emmeans(ordinal.model, ~ has_elite.flprice.f, mode = "prob")
emmip(ordinal.model, has_elite.f~ price.f, Cls = T, mode = "prob")

emmeans(ordinal.model, ~ price.flhas_elite.f, mode = "prob")
emmip(ordinal.model, has_elite.f~ price.f, Cls = T, mode = "prob")

HH#brant test
install.packages("brant”)
library(brant)
brant(ordinal.model)
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Part 1: Baseline Model

1.1 Elite reviews, price levels and effects on restaurant staying open

Call:
glm(formula = is_open ~ price_level + elite_cnt, family = binomial,

data = biz)

Variable Coefficient Odds Ratio = exp(coef)
Coefficients:
Estimate Std. Error z value Pr(Glzl)
(Intercept) 0.619096 0.041607 14.879 < 2e-1p ***
price_levelprice_2 -0.575534 0.058184 -9.892 < 2e-16 *** elite_cnt 0.017377 exp(0.017377)=1.0175
price_levelprice_3 -1.128083 0.164466 -6.859 6.93e-12 ***
price_levelprice_4 -1.198810 0.271761 -4.411 1.03e-05 ***
elite_cnt 0.017377 0.001379 12.598 < Z2e-16 ***
Signif. codes: 0 ‘***’ @ @001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1 .
J Elite Status:

(Dispersion parameter for binomial family taken to be 1) e Each additional review increases the likelihood of a

Null deviance: 7799.2 on 5965 degrees of freedom restaurant staying open by about 1.75% (exp/A0.017).
Residual deviance: 7482.0 on 5961 degrees of freedom
AIC: 7492

Number of Fisher Scoring iterations: 5



Part 1: Baseline Model

1.1 Elite reviews, price levels and effects on restaurant staying open

glm(formula = is_open ~ price_level + elite_cnt, family = binomial,

Estimate Std. Error z value Pr(>lzl)

Call:
data = biz)

Coefficients:

(Intercept) 0.619096 0.041607
price_levelprice_2 -0.575534 0.058184
price_levelprice_3 -1.128083 ©.164466
price_levelprice_4 -1.198810 ©.271761
elite_cnt 0.017377 ©.001379

Signif. codes: @ “***’ 0.001

Rt 0.01

14.879 < 2e-16
-9.892 < 2e-16
-6.859 6.93e-12
-4.411 1.03e-05
12.598 < 2e-16

‘% 9,05 . 9.1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 7799.2 on 5965 degrees of freedom
Residual deviance: 7482.0 on 5961 degrees of freedom

AIC: 7492

Number of Fisher Scoring iterations: 5

ok ok ok
ke ok ok
o ok ok
ke ok ok

* % %

£

1

Price Level Coefficient Odds Ratio = Interpretation
exp(coef)
orice_ 2 _0.575534 ~ 056 44% lower odds.of staying open
vs. price_]1
orice_3 1128083 ~0.39 68% lower odds.of staying open
vs. price_]1
orice_4 119881 ~ 0.30 /0% lower odds of staying open

vs. price_]1

Price Level:

e Price level 2 restaurants are 44% (exp/A-0.57) less likely

to stay open than price level 1 restaurants.

e Price level 3 restaurants are 68% (expA-1.12) less likely

to stay open than price level 1 restaurants.

e Price level 4 restaurants are 70% (expA-1.19) less likely

to stay open than price level 1 restaurants.




Part 1: Baseline Model

1.2 & 1.3 Setting threshold to minimize total expected cost

Costs of false prediction:
e Each False Positive prediction (predicting
restaurant open when it’'s closed): $55
e Each False Negative prediction (predicting

restaurant closed when it's open): $20

Cost-Sensitive Thresholding
e Calculating total expected costs at each
threshold shows that Optimal Threshold

that minimizes total expected cost is 0.7.

Sensitivity and specificity should be balanced to

deliver good user experience.

Youden’s Index

Optimal Youden'’s index that balances both sensitivity
and specificity and minimizes cost is 0.574.

Confusion matrix at 0.574 as threshold:

Actual
Confusion Matrix
Closed Open
Closed 935 8953
Predicted
Open 1215 2963



Part 1: Baseline Model

1.4 Mean accuracy across all thresholds between the cost-sensitive threshold
and the threshold that maximizes Youden’s Index.

all_coords_{— coords(roc_obj, "all", ret = c("threshold", "tp", "tn", "fp", "fn"))
filtered_coords <- subset(all_coords, threshold >= 0.574 & threshold <= 0.7)

>

>

>

>

> filtered_coords$accuracy <- (filtered_coords$tp + filtered_coords$tn) /

+ (filtered_coords$tp + filtered_coords$tn + filtered_coords$fp + filtered_coords$fn)
>
>

mean_accuracy <- mean(filtered_coords$accuracy)
>
> cat("Mean Accuracy between thresholds 0.574 and 0.7 i1s", round(mean_accuracy, 4), "\n")
Mean Accuracy between thresholds 0.574 and 0.7 1s 0.574

Mean accuracy across all thresholds between the cost-sensitive threshold and
the threshold that maximizes Youden’s Index is 0.574.

In the range of thresholds, the model's predictions are correct about 57.4% of the
time on average.



Part 1: Model 2, including average star rating and number of
reviews from repeated consumers

1.5 Model 2's predictive power compared to Model 1

> print(roc_objl) Yelp's guideline:
e 0.6-0.7: Poor (weak predictive power).

Call:
a e 0.7-0.8: Fair (moderate usefulness for decision-making).

roc.default(response = biz$is_open, predictor = pred_probsl)

Data: pred_probsl in 2150 controls (biz$is_open @) < 3816 cases (biz$is_open 1).

Area under the curve: 0.6456 MOdel 1
> print(roc_obj2)
. ¢ AUC: 0.6456
roc.default(response = biz$is_open, predictor = pred_probs2)
Model 2:
Data: pred_probs2 in 2150 controls (biz$is_open @) < 3816 cases (biz$is_open 1).
Area under the curve: 0.703 e AUC: 0.703

Model 2 shows a meaningful improvement over Model 1, increasing the AUC from
0.6456 (poor predictive power) to 0.703 (fair predictive power).
Model 2 is more reliable and useful for decision-making.



Part 1: Model 2, including average star rating and number of

reviews from repeated consumers

1.6 Identify high-probability restaurant segments

> print(gains_table)

Depth

segments where lift index (non-
cumulative) > 100%: top 5 deciles
(Depths 10-50)

% of open restaurants captured in these
high-lift segments: 60.5%

% of total restaurants covered (to
assess targeting efficiency):. 2983/5966
= 50%



Part 1: Model 2, including average star rating and number of
reviews from repeated consumers

1.6 Marketing strategy recommendations for Yelp

e Prioritize restaurants in the top 5 deciles of predicted survival probability for the
delivery service pilot.

o These segments achieve a Lift Index > 100%, meaning they significantly
outperform random targeting. Specifically, by targeting just 50% of the
restaurant population, Yelp can capture over 60% of open businesses,
demonstrating high targeting efficiency.

o Marketing efforts (e.g., promotional credits) should also be concentrated in
these high-lift groups. Additionally, segment-specific messaging can be used
to appeal to business owners’ demonstrated strength and survival probability,

reinforcing Yelp’s value as a trusted partner.



Part 2.1: Model Evaluations with Test Set

2.1.1. Calculate and report the AUC of each model on both the train and test sets

set.seed(123)

train_indices <- sample(l:nrow(biz), size = 0.7 * nrow(biz))

train_data <- biz|train_indices, |
test_data <- biz|-train_indices, |

# Predictions
train_predl <- predict(glm.modell, train_data, type
test_predl <- predict(glm.modell, test_data, type =

train_pred2 <- predict(glm.model2, train_data, type
test_predZ2 <- predict(glm.model2, test_data, type =

Step 1 - Partition:

« Randomly reserve 30% of data as the test set (holdout).

Step 2 - Train:

e Use the remaining 70% (training set) to build the model.

Step 3 - Evaluate:

e Test the model on the untouched test set to measure

reallworld performance.

= "response")
"response”)

= "response")
"response")

modell_auc <- c(
auc(roc(train_data$is_open, train_predl)),
auc(roc(test_data$is_open, test_predl)))

names(modell_auc) <- c("Train Set", "Test Set")

> print(modell_auc)
Train Set Test Set
0.6479150 0.06402141

AUC of model 1on

train and test sets

modelZ2_auc <- c(
auc(roc(train_data$is_open, train_pred2)),
auc(roc(test_data$is_open, test_pred2)))

names(modelZ2_auc) <- c("Train Set", "Test Set")

> print(modelZ_auc)
Train Set Test Set
0.7052925 0.6974862

AUC of model 2 on

train and test sets

For both model: Train AUC = Test AUC

Stable performance & minimal overfitting

Trust the model.



Part 2.1: Model Evaluations with Test Set

2.1.2. Which model would you recommend based on the AUC comparison?

Model Train Set AUC | Test Set AUC Predictive Power
Model 1 0.6479 0.6402 0.6-0.7: Poor
Model 2 0.7053 0.6975 0.7-0.8: Fair

Recommend Model 2:
Model 2 consistently outperforms Model 1 on both the

training and test sets.

e« Model 1's test set AUC falls in the “poor” range (0.6-0.7)
e Model 2's test set AUC is almost in the “fair” range (0.7-
0.8), based on Yelp’'s guidelines.

e The test AUC improvement from 0.6402 to 0.6975
indicates that Model 2 generalizes better to unseen data.

e The training and test AUCs of Model 2 are close,
suggesting low overfitting despite the more complex

specification.



Part 2.2: Model 3

10-fold cross validation of three models

Model 3 = glm(is_open ~ poly(elite_cnt, 2, raw=T) + price_level*biz.stars*repeated_cnt + city)

Model Mean AUC (Train) Mean AUC (Test)
Model 1 0.6464 0.6373
Model 2 0.7035 0.6962
Model 3 0.7217 0.7122

e \When the new Model 3 is introduced, we can see the
average AUC is higher than the previous two models,
which means Model 3 has a stronger prediction power.

e By checking the train AUC and test AUC, both Model 2
and Model 3 show a good ability of generalization.
Model 1 showed a poor prediction power since the

mean AUCs are similar to the baseline AUC.



Part 2.2: Model 3

AUC comparison and best model

0
Mean AUC Mean AUC 0 EEEL
Model (Train) (Test) compared to
baseline model
Model 1 0.6464 0.6373
Model 2 0.7035 0.6962 9.24% (marginal)
Model 3 0.7217 0.7122 11.75% (marginal)

*from model 2 to model 3: improved 1.82%

e Improvement Magnitude:
Model 2 achieves a +9.24% AUC gain over Model ],
which crosses the 5% threshold for marginal
iImprovement. Model 3, while the best performer,
offers 11.75% improvement of AUC over Model 1. Still
within the marginal range.

e Complexity-Utility Tradeoff:
Model 3 introduces significant complexity for a
minimal performance gain. This risks overfitting in
practice, especially if the sample size is limited.
Model 2 provides a better balance: it captures
meaningful patterns without excessive complexity.

e Practical Considerations:
If future data exhibits distribution shifts, Model 2's

simplicity may generalize more robustly.



Appendix

# predictions from the model
pred_probs <- predict(glm.modell, type = "response”)

Part 1:

install.packages("pROC") #if you have not installed the package
library(pROC)

# ROC curve analysis

roc_obj <- roc(biz$is_open, pred_probs)

HH#H Q1.1
biz$has_elite = ifelse(biz$elite_cnt > O, 1, O)

glm.model=glm(has_elite ~ rst.stars + price_level, data=biz, plot(roc_obj, main = "ROC Curve', print.auc = T,
family=binomial) legacy.axes = TRUE, lwd = 2)

summary(glm.model)
e #Cost-Sensitive Thresholding

cost_FP <- 55
coef(glm.model)[2] cost_FN <- 20
exp(coef(glm.model)[2])
exp(coef(glm.model)[3]) library(dplyr)
exp(coef(glm.model)[4]) # Calculate costs for all thresholds

# coords returns the coordinates of the ROC curve at one or several specified point(s).
costs <- coords(roc_obj, "all’,
ret = c("threshold", "fp", "fn")) %>%
mutate(total_cost = fp * cost_FP + fn * cost_FN)

exp(coef(glm.model)[5])

# count the fp and fn under each thresholld
# coords(roc_obj, "all’, ret = c("threshold’, "fp", "fn"))

# Find optimal threshold: minimizing total cost
optimal_threshold <- costs$threshold[which.min(costs$total_cost)]
print(paste("Optimal threshold:", round(optimal_threshold, 3)))



Appendix
Part 1:

#H## QL3

#H#** youden index: This threshold represents the point where the
model achieves **

# Extract sensitivity, specificity, and thresholds

youden <- coords(roc_obj, "all’, ret = c("threshold", "sensitivity",
"specificity”))

youden

# Calculate Youden's J and find the optimal threshold
youden$youden_j <- youden$sensitivity + youden$specificity - 1
youden

optimal_idx <- which.max(youden$youden_j)
optimal_threshold2 <- youden$threshold[optimal_idx]

print(paste("Optimal Threshold (Youden's Index):",
round(optimal_threshold2, 3)))

# count the tp tn fp and fn under optimal_threshold2
coords(roc_obj, optimal_threshold2, ret = c("threshold", "tp", "tn", "fp", "fn"))

HH# matrix
conf_matrix <- matrix(
c(2963, 1215, 853, 935),
nrow = 2,
byrow = TRUE,
dimnames = list(
"Predicted” = c("Positive’, "Negative"),
"Actual” = c("Positive", "Negative")
)
)

print(conf_matrix)



Appendix
Part 1:

#H#H Ql4
# Step 1: Get all threshold-level stats from the ROC object
all_coords <- coords(roc_obj, "all’, ret = c("threshold”, "tp", "tn", "fp",

)

# Step 2: Filter thresholds between 0.574 and 0.7
filtered_coords <- subset(all_coords, threshold >= 0.574 &
threshold <= 0.7)

# Step 3: Calculate accuracy for each threshold
filtered_coords$accuracy <- (filtered_coords$tp +
filtered_coords$tn) /

(filtered_coords$tp + filtered_coords$tn + filtered_coords$fp +
filtered_coords$fn)

# Step 4. Compute mean accuracy
mean_accuracy <- mean(filtered_coords$accuracy)

# Step 5: Print result
cat("Mean Accuracy between thresholds 0.574 and 0.7 is",
round(mean_accuracy, 4), "\n")

#H#H# QL5
glm.model2= gim(is_open ~ elite_cnt + price_level * biz.stars +
repeated_cnt, biz, family =

binomial)

summary(glm.model2)

# model 1
pred_probsl <- predict(glm.modell, type = "response”)

library(pROC)
roc_objl <- roc(biz$is_open, pred_probsl)
print(roc_obijl)

plot(roc_obijl, main = "ROC Curve’, print.auc =T,
legacy.axes = TRUE, lwd = 2)

# model 2
pred_probs2 <- predict(glm.model2, type = "response”)

roc_obj2 <- roc(biz$is_open, pred_probs?2)
print(roc_obj2)

plot(roc_obj2, main = "ROC Curve", print.auc =T,
legacy.axes = TRUE, lwd = 2)



Appendix
Part 1:

### Q1.6
#** Generate gains table **

biz$pred_prob2 <- pred_probs2 <- predict(glm.model2, type =
"response")

str(biz)

install.packages("gains”)
library(gains)
gains_table <- gains(actual = biz$is_open, predicted =
biz$pred_prob?2,
groups = 10)
print(gains_table)



Appendix

Part 2:

HHH Q2.1 # Predictions
train_predl <- predict(glm.modell, train_data, type = "response”)
set.seed(123) test_pred] <- predict(gim.modell, test_data, type = "response")

train_indices <- sample(l:nrow(biz), size = 0.7 * nrow(biz))
train_pred2 <- predict(glm.model2, train_data, type = "response”)

train_data <- biz[train_indices, ] test_pred2 <- predict(glm.model2, test_data, type = "response”)
test_data <- biz[-train_indices, |
library(pROC)

# Model 1 # Compare AUC
glm.modell=gim(is_open ~ elite_cnt + price_level, data=biz, modell_auc <- c(
family=binomial) auc(roc(train_data$is_open, train_predl)),
# Model 2 auc(roc(test_data$is_open, test_predl)))
glm.model2= glm(is_open ~ elite_cnt + price_level * biz.stars +
repeated_cnt, biz, family = names(modell_auc) <- c("Train Set", "Test Set")

binomial) print(modell_auc)

model2_auc <- ¢(
auc(roc(train_data$is_open, train_pred2)),
auc(roc(test_data$is_open, test_pred?2)))

names(model2_auc) <- c("Train Set", "Test Set")
print(model2_auc)



Appendix
Part 2:

HHH Q2.2

glm.model3= gim(is_open ~ poly(elite_cnt, 2, raw=T) +
price_level*biz.stars*repeated_cnt + city,
biz, family=binomial)

summary(glm.model3)

# Set seed for reproducibility
set.seed(123)

# Define number of folds

k <-10

folds <- cut(seq(l, nrow(biz)), breaks = k, labels = FALSE)
table(folds)

biz$is_open_f <- factor(ifelse(biz$is_open==1, "open”, "closed"),
levels=c("open”,"closed"))
str(biz)

# Load required library
library(pROC)

# Initialize vector to store AUCs
auc_valuesl_test <- numeric(k)
auc_valuesl_train <- numeric(k)

# Perform k-fold CV

for(i in 1:k) {
# Split into train and test sets
test_indices <- which(folds == i)
train_data <- biz[-test_indices, ]
test_data <- biz[test_indices, ]

model <- gim(is_open_f ~ elite_cnt + price_level,
data = train_data, family = binomial)

# Predict probabilities on the test set
pred_probsl_train <- predict(model, newdata = train_data, type = "response”)
pred_probsl_test <- predict(model, newdata = test_data, type = "response”)

# Compute AUC

roc_objl_train <- roc(train_data$is_open_f, pred_probsl_train)
roc_objl_test <- roc(test_data$is_open_f, pred_probsl_test)
auc_valuesl_train[i] <- auc(roc_obijl_train)

auc_valuesl_test[i] <- auc(roc_objl_test)

}

# Combine results into a data frame
cv_results] <- data.frame(
Fold = 1k,
AUC_Train = auc_valuesl_train,
AUC_Test = auc_valuesl_test

)

cv_resultsl

# Mean AUC for training data
mean_auc_trainl <- mean(cv_results1$AUC_Train)

# Mean AUC for test data
mean_auc_testl <- mean(cv_results1$AUC_Test)

# Print the results
mean_auc_trainl #0.6464
mean_auc_test] #0.6373



# Initialize vector to store AUCs
auc_values2_test <- numeric(k)
auc_values2_train <- numeric(k)

# Perform k-fold CV

for(i in 1:k) {
# Split into train and test sets
test_indices <- which(folds == i)
train_data <- biz[-test_indices, ]
test_data <- biz[test_indices, ]

model <- gim(is_open ~ elite_cnt + price_level * biz.stars + repeated_cnt, biz, family =
binomial)

# Predict probabilities on the test set
pred_probs2_train <- predict(model, newdata = train_data, type = "response")
pred_probs2_test <- predict(model, newdata = test_data, type = "response”)

# Compute AUC

roc_obj2_train <- roc(train_data$is_open_f, pred_probs2_train)
roc_obj2_test <- roc(test_data$is_open_f, pred_probs2_test)
auc_values2_train[i] <- auc(roc_obj2_train)

auc_values2_test[i] <- auc(roc_obj2_test)

}

# Combine results into a data frame
cv_results2 <- data.frame(
Fold = 1k,
AUC_Train = auc_values2_train,
AUC_Test = auc_values2_test

)

cv_results?2

# Mean AUC for training data
mean_auc_train2 <- mean(cv_results2$AUC_Train)

# Mean AUC for test data
mean_auc_test2 <- mean(cv_results2$AUC_Test)

# Print the results
mean_auc_train2 #0.7035
mean_auc_test2 #0.6962

# Train AUC = Test AUC Stable performance. Trust the model.

# Initialize vector to store AUCs
auc_values3_test <- numeric(k)
auc_values3_train <- numeric(k)

# Perform k-fold CV

for(iin 1:k) {
# Split into train and test sets
test_indices <- which(folds == i)
train_data <- biz[-test_indices, ]
test_data <- biz[test_indices, ]

model <- gim(is_open ~ poly(elite_cnt, 2, raw=T) + price_level*biz.stars*repeated_cnt +
city,
biz, family=binomial)

# Predict probabilities on the test set
pred_probs3_train <- predict(model, newdata = train_data, type = "response")
pred_probs3_test <- predict(model, newdata = test_data, type = "response”)

# Compute AUC

roc_obj3_train <- roc(train_data$is_open_f, pred_probs3_train)
roc_obj3_test <- roc(test_data$is_open_f, pred_probs3_test)
auc_values3_train[i] <- auc(roc_obj3_train)

auc_values3_test[i] <- auc(roc_obj3_test)

}

# Combine results into a data frame
cv_results3 <- data.frame(
Fold = 1k,
AUC_Train = auc_values3_train,
AUC_Test = auc_values3_test

)

cv_results3

# Mean AUC for training data
mean_auc_train3 <- mean(cv_results3$AUC_Train)

# Mean AUC for test data
mean_auc_test3 <- mean(cv_results3$AUC_Test)

# Print the results
mean_auc_train3 #0.7217
mean_auc_test3 #0.7122

# Train AUC = Test AUC Stable performance. Trust the model.



## Q2.2.2

# baseline is Modell's Test AUC
baseline <- results$Test_AUC[results$Model=="Modell"]

# compute relative improvements

improv2 <- (results$Test_AUC[results$Model=="Model2"] - baseline) /
baseline

improv3  <- (results$Test_AUC[results$Model=="Model3"] - baseline) /
baseline

# pick best of Model2/3
if (improv2 > improv3) {

best_model <-"Model2"; best_improv <- improv2
} else {

best_model <-"Model3"; best_improv <- improv3

}

# decision logic
if (best_improv < 0.05) {
cat("All more complex models improve < 5%  stick with Modell
(simplest).\n")
} else if (best_improv > 0.15) {
cat(sprintf("%s is substantially better (%.1f%% ) use %s.\n",
best_model, best_improv*100, best_model))
} else {
cat(sprintf("%s yields a moderate gain of %.1f%% (5-15%%) not worth the
extra complexity; stick with Modell.\n",
best_model, best_improv*100))

}





