
463 Machine463 Machine
LearningLearning

 HW 1HW 1
Group 9: Grace Chen, Vanessa
Chen, Amanda Lee, Sheryl Xu

Business Question

Yelp Dataset
Specializing Influence Marketing
Data size: 5966 restaurants
Four metropolitan areas

Q1 Regress average star rating on the number of elite users (elite_cnt), price levels (price_level is
a categorical variable with 4 levels), metropolitan area (metro, Charlotte, Phoenix, Pittsburgh, Las
Vegas) and business age (biz_age) in days (M = 2237.367, SD =1384.987). Report output.

Q2 Test the overall significance of the model by stating the null and alternative, P -
value and decision.

H₀: All regression coefficients are equal to zero (β₁ = β₂ = ... = β₈ = 0
H₁: At least one regression coefficient is not equal to zero

Decision: at least on p-value is less than 0.05.

Conclusion: Since the p-value is less than 0.05, we

reject the null hypothesis. There is sufficient evidence

to conclude that the model is statistically significant

at the 95% confidence level.

Q3 Report the estimated regression equation.

biz.stars = 3.3540

+ 0.002393×(elite_cnt)

+ 0.2444×(price_levelPrice_2)

+ 0.2084×(price_levelPrice_3)

+ 0.4913×(price_levelPrice_4)

+ 0.1043×(metroPhoenix_area)

+ 0.1291×(metroPittsburgh)

+ 0.08726×(metroVegas_area)

- 0.00008795×(biz_age)

Q4 What fraction of variation in average star rating is explained by the terms in
this model? Comment on the magnitude and the implication.

Multiple R-squared: 0.07706

This means that the predictors in the model

(elite_cnt, price_level, metro, and biz_age)

collectively explain approximately 7.7% of the

variation in the restaurants’ average star ratings.

Magnitude: 7.7% is low, indicating that while

these predictors do have a statistically

significant relationship with star ratings, the

majority of the variation (over 90%) remains

unexplained.

Implication: The model needs improvement.

Adding more variables may capture a larger

portion of variability in ratings.

Q5 Are there differences in average star rating between price levels? Use your model
in part 1 to answer the question. State the null and alternative, P-value and decision
using the .05 level.

Decision: Because the p-values for all price-
level coefficients are <0.05, and the overall F-
test for “price” as a factor would also yield a p-
value <0.05, reject H0.
Conclusion: Price level is positively correlated
with the average star rating. since price level 1
is the dummy variable.
Among price level 2,3 and 4, price level 4 has
the highest affect on the rating, indicating
consumers might hold the belief “you are
paying what you get”

 Does the model in part 1 provide evidence that business age affects average star
rating? State the null and alternative, P-value and decision using the .05 level.
Q6

Decision: Because the p-value is <0.05, reject H0.
Conclusion: The business age is negatively
correlated with the average star rating.
However, since the coefficient is only
-0.00008795, the effect is nearly negligible.

Business age has no effect on average star rating.

Business age has an effect on average star rating.

 Keep the number of elite users and the price levels as the only predictors on
average star ratings in the model. Add an appropriate transformation to the model to
allow for a U-shaped effect from the number of elite users on average star rating. Use at
least two additional models (I suggest estimating log and quadratic models).

Q7

 Baseline Model: Quadratic Model: Log Model:

Q7

Cubic Model:

 Keep the number of elite users and the price levels as the only predictors on
average star ratings in the model. Add an appropriate transformation to the model to
allow for a U-shaped effect from the number of elite users on average star rating. Use at
least two additional models (I suggest estimating log and quadratic models).

Q7

Cubic Model:

 Keep the number of elite users and the price levels as the only predictors on
average star ratings in the model. Add an appropriate transformation to the model to
allow for a U-shaped effect from the number of elite users on average star rating. Use at
least two additional models (I suggest estimating log and quadratic models).

 What potential modeling challenges might arise if we include these two additional
variables (1) total review volume (biz.rws.cnt) and 2) repeat customer frequency
(repeated_cnt)? Using appropriate diagnostic tests, demonstrate whether these concerns
are real and severe.

Q8

Concern 1: Multicollinearity
New variables may correlate with existing predictors
(e.g., elite users may drive review volume).
Test: Variance Inflation Factor (VIF)

Result: elite_cnt and biz.rws.cnt have high VIF (>5), so
there is multicollinearity between them

 What potential modeling challenges might arise if we include these two additional
variables (1) total review volume (biz.rws.cnt) and 2) repeat customer frequency
(repeated_cnt)? Using appropriate diagnostic tests, demonstrate whether these concerns
are real and severe.

Q8

Concern 1: Multicollinearity → Real & Severe
elite_cnt and biz.rws.cnt have high VIF (>5), so
there is high multicollinearity between them
Solution: Drop One of the Collinear Variables

Conclusion: Dropping biz.rws.cnt and
keeping elite_cnt gives smaller VIF → better
option to deal with the multicollinearity

Option B:
Keep biz.rws.cnt

Drop elite_cnt

Option A:
Keep elite_cnt
Drop biz.rws.cnt

 What potential modeling challenges might arise if we include these two additional
variables (1) total review volume (biz.rws.cnt) and 2) repeat customer frequency
(repeated_cnt)? Using appropriate diagnostic tests, demonstrate whether these concerns
are real and severe.

Q8

Conclusion:
In the initial model (lm_1), the effect of elite
users was confounded by omitted variables
(e.g., biz.rws.cnt), which inflated the
estimate.
After controlling for review volume and
repeat customers in lm_2, elite users are
associated with lower ratings, suggesting
that the true effect of elite users may be
critical or selective.
Solution: Including other Instrumental
variables (IV)

Concern 2: Omitted variable bias
Test: Compare coefficients before/after adding
variables.
Results:
elite_cnt coefficient flipped from +0.0024 (lm_1)
to -0.0029 (lm_2).

 What potential modeling challenges might arise if we include these two additional
variables (1) total review volume (biz.rws.cnt) and 2) repeat customer frequency
(repeated_cnt)? Using appropriate diagnostic tests, demonstrate whether these concerns
are real and severe.

Q8

Concern 3: Model Overfitting
Concern: Added variables may improve fit artificially.
Test: Compare adjusted R² and AIC&BIC of lm_1 vs. lm_2

Results:
lm_1: Adj. R² = 0.0758
lm_2: Adj. R² = 0.0986 Conclusion:

Not model overfitting
lm_2 improves fit (higher Adj. R², lower
AIC & BIC), suggesting meaningful added
explanatory power.

 Return to the regression model you built earlier (in part 1) and rerun it using
bootstrap resampling with 1,000 iterations. Report the mean and confidence intervals of
the coefficient of elite.cnt.

Q9

mean: 0.002582083
95%CI: [0.002538082, 0.002626083]

 Compare the average star ratings across different price levels directly, using
descriptive statistics and confidence intervals without relying on regression or other
modeling assumptions. Report the output and visualize the differences with a plot of
average star ratings (y axis) by price levels (x axis).

Q10

price_1 has the lowest mean rating (3.26).

price_2 (3.56) and price_3 (3.59) have fairly close means and overlapping confidence intervals. Further testing is

needed to tell if there’s a significant difference between them.

price_4 (3.85) has the highest mean rating and a wider interval. Its range does not fully overlap with the lower

groups’ intervals, suggesting it is indeed higher on average.

Trend: Higher price levels have higher mean star ratings.

 Compare the average star ratings across different price levels directly, using
descriptive statistics and confidence intervals without relying on regression or other
modeling assumptions. Report the output and visualize the differences with a plot of
average star ratings (y axis) by price levels (x axis).

Q10

HW3HW3
Group 9: Grace Chen, Vanessa Chen,

Amanda Lee, Sheryl Xu

BusinessBusiness
QuestionQuestion
Yelp Data Set
Specializing Influencing Marketing
Data Size: 5966 restaurants
Four Metropolitan Areas

Part 1: Rental Cost AnalysisPart 1: Rental Cost Analysis
Regression 1: rental_cost on dist_destination

Observation:
Distance to the nearest tourist hotspot
has a p-value < 5%, which means it’s a
significant predictor to rental cost
With every 1 mile increase in
dist_destination, rental cost decreases
by 0.54
The model has a p-value < 5%, meaning
this is a model with significant predicting
power over rental cost

Part 1: Rental Cost AnalysisPart 1: Rental Cost Analysis
Regression 2: rental_cost on dist_destination + prime_location

Observation:
dist_destination is no longer a significant
predictor, and coefficient changes from
-0.54 to 0.012
Prime_location is a significant predictor
(p-value < 5%)
Businesses in prime location pays $4.064
more rental than those not in prime
location
The model has a p-value < 5%, meaning
this is a model with significant predicting
power over rental cost

Dist_Destination

Part 1: Rental Cost AnalysisPart 1: Rental Cost Analysis
VIF on Regression 2 & DAG

Pipe Structure

VIF result shows moderate
multicollinearity (>5) between
destination to the nearest tourist
hotspot and prime location. We proceed
to examine the relationship between the
rental cost and these two variables.

Prime_location

Rental Cost

A pipe structure explains the
confounding relationship and the
change in dist_destination’s effect after
considering prime_location.

The true predictor of rental cost is
prime location; however, distance to
tourist hotspot contributes to making a
restaurant location a prime location.
Therefore, adding prime_location
removes the false effect of
dist_destination and reveals the real
predictor.

Part 1: Rental Cost AnalysisPart 1: Rental Cost Analysis
Using drop1() to choose predictors

Drop1() results show that dropping
prime_location variable will increase residual
R-squared (RSS) and sum-squared.

This means dropping prime_location will
decrease model predictability because
there will be more unexplained variance.

Therefore, prime location is a strong predictor
of rental cost.

Part 2: Health Inspection AnalysisPart 2: Health Inspection Analysis
Regression 1: inspector_visit & dist_destination

Observation:
Since the p-value of the dis-destination is
greater than 0.05, we can’t reject the null
hypothesis.
there’s no sgnificant relationship between
dist_destination and inspector visit.

Part 2: Health Inspection AnalysisPart 2: Health Inspection Analysis
Regression 2: inspector_visit & dist_destination + health_alarm

Observation:
After introducing the factor of
health_alarm, both dist_destination and
health_alarm have a p-value less than 0.05,
which rejects the null hypothesis.
When the distance of destinations
increased by one mile, the inspector visit
increased by 0.06.
Every health alarm happened can cause the
inspector visit increased 1.06.

inspector_visit = 0.788 + 0.068dist_destination + 1.061 health_alarm

Part 2: Health Inspection AnalysisPart 2: Health Inspection Analysis
VIF and relationship

VIF result shows there’s low to
moderate multicollinearity between
destination to the nearest tourist
hotspot and health alarm.
No further analysis needed

BUT...BUT...

Dist_Destination

Health_alarm

Inspector_visit

The model is considered a collider
because of the following factors:

dist_destination is not correlated with
inspector visits individually (in model 1,
the p-value is greater than 0.05)
After introducing health_alarm into
the model, both health_alarm and
dist_destination become significant
(see model 2)

This is because of the collider bias.

Thus, we should control health_alarm if we are
examining the relationship between inspector
visits and the destination to the nearest tourist
hotspot. It artificially creates a false association
between dist_destination and inspector_visit
(even if none exists).

Part 3: What Makes a Restaurant Popular?Part 3: What Makes a Restaurant Popular?

Main effects:
For closed restaurant, each additional
star increases the number of reviews by
25.773.
For restaurants that are open, the number
of reviews is expected to be 123.789 fewer
than for closed restaurants.

Interaction:
For every additional star, the increase in
the number of reviews for open
restaurants is 70.47 more than the
increase for closed restaurants.

Reputation matters more in restoring popularity.

Part 3: What Makes a Restaurant Popular?Part 3: What Makes a Restaurant Popular?

Mean popularity (reviews) for 4-star restaurants

Closed: 83.5

Open: 241.6

Difference: 158

Open restaurants with 4 stars have 158 more

reviews than closed restaurants with the

same star rating on the average.

Visualization of the effect

241.6

83.5

Part 3: What Makes a Restaurant Popular?Part 3: What Makes a Restaurant Popular?

Main effects:

For each additional elite Yelper, the

number of reviews increases by 3.687 for

restaurants that are closed, assuming the

restaurant has zero stars.

For each additional star, the number of

reviews increases by 8.025, assuming the

restaurant is closed and there are no elite

Yelpers.

Part 3: What Makes a Restaurant Popular?Part 3: What Makes a Restaurant Popular?

Two-way Interaction:

For open restaurants, each additional star

increases the number of reviews by

11.82286 more than for closed restaurants.

Three-way Interaction:

For open restaurants, the number of

reviews increases by 0.63453 more for

each additional elite Yelper, for each

additional star.

The emmeans function shows the mean
popularity (biz.rws.cnt) when:

with 100 elite reviews: elite_cnt = 100
in good operation status: is_open = 1
average star rating of 4 and 5: rst.stars =
c(4, 5)

 → The mean review counts of 4-star
restaurants is 598 and 689 for 5-star
restaurants.

 → The difference in popularity (biz.rws.cnt)
between 4-star and 5-star restaurants is 91.5.

Part 3: What Makes a Restaurant Popular?Part 3: What Makes a Restaurant Popular?

The difference in popularity between the
restaurants in good operation status with
100 elite reviews but with average star
rating of 4 and 5

Part 3: What Makes a Restaurant Popular?Part 3: What Makes a Restaurant Popular?
The difference in popularity between the restaurants in good operation status with
average star rating of 4 and 5, under different number of elite reviews

598

689

Visualization of the effect

598

689

Key Implications:
Reputation & Open Status Synergy: High-rated (4–5 star) open
restaurants gain significantly more reviews, especially when combined
with elite Yelpers. The interaction between stars and operational status
is critical—closed restaurants see minimal benefits from reputation
alone.
Elite Yelper Amplification: Elite influencers disproportionately boost
popularity for open, high-rated restaurants (e.g., 5-star restaurants
with 100 elite reviews get ~90 more reviews than 4-star counterparts).

Business Suggestions:
Target Campaigns: Offer perks (e.g., “Elite Dining Events”) to encourage
4-star venues to improve to 5-star and maximize review growth
Promote Star Ratings: Encourage restaurants to improve ratings (e.g.,
service training), as each star increase drives about 8 more baseline
reviews, and even more with elite Yelpers.
Operational Priority: Highlight open status in marketing (e.g., "Now
Open!") to leverage its interaction with reputation.

Part 3: What Makes a Restaurant Popular?Part 3: What Makes a Restaurant Popular?

Thank youThank you
very much!very much!

AppendixAppendix
Part 1: Rental Cost Analysis

lm_1 = lm(rental_cost ~ dist_destination, data=biz)
summary(lm_1)

lm_2 = lm(rental_cost ~ dist_destination + factor(prime_location), data=biz)
summary(lm_2)

library(car)
vif(lm_1)
vif(lm_2)

anova(lm(rental_cost ~ dist_destination + factor(prime_location), biz))
anova(lm(rental_cost ~ factor(prime_location) + dist_destination, biz))
drop1(lm(rental_cost ~ dist_destination + factor(prime_location), biz))

AppendixAppendix
Part 2: Health Inspection Analysis

lm_HI_1 = lm(inspector_visit ~ dist_destination, data=biz)
summary(lm_HI_1)

lm_HI_2 = lm(inspector_visit ~ dist_destination + factor(health_alarm), data=biz)
summary(lm_HI_2)

vif(lm_HI_1)
vif(lm_HI_2)

AppendixAppendix
Part 3: What Makes a Restaurant Popular?

Interaction effect
lm_pop = lm(biz.rws.cnt ~ rst.stars + factor(is_open) + rst.stars*factor(is_open), data=biz)
summary(lm_pop)

Compare means of open vs. closed of 4-star restaurants
em.pop=emmeans(pop_interaction, "is_open")
em.pop_4_stars=emmeans(pop_interaction, "is_open", at = list(rst.stars = 4))
em.pop_4_stars
pairs(em.pop_4_stars)

visualization
quantile(biz$rst.stars)
emmip(pop_interaction, factor(is_open) ~ rst.stars, CIs=TRUE,
 at=list(rst.stars = c(1,5)))

AppendixAppendix
Part 3: What Makes a Restaurant Popular?

three_way_interaction
three_interaction = lm(biz.rws.cnt ~ elite_cnt* rst.stars* factor(is_open), data = biz)
summary(three_interaction)

Compare differences
library(emmeans)
em_4.5 <- emmeans(three_interaction, ~ rst.stars | elite_cnt + is_open,
 at = list(elite_cnt = 100, is_open = 1, rst.stars = c(4, 5)))
em_4.5
pairs(em_4.5) # Calculates the difference

visualization
em_grid <- emmeans(three_interaction, ~ elite_cnt | rst.stars,
 # Plot elite_cnt effects conditioned on star rating
 at = list(
 elite_cnt = seq(0, 100, by = 20), # Range of elite Yelpers
 rst.stars = c(4, 5), # Compare 4 vs. 5 stars
 is_open = 1 # Only open restaurants
)
)
em_grid

visualization
emmip(em_grid, rst.stars ~ elite_cnt)

HW4HW4
Group 9: Grace Chen, Vanessa
Chen, Amanda Lee, Sheryl Xu

Part 1: Factors Influencing Elite Review AttractionPart 1: Factors Influencing Elite Review Attraction
1.1 Use binary logistic regression to predict has_elite (the presence of at least one elite review).

Interpretation:

rst.stars: For each increase in restaurant

stars，the log-odds of attracting an elite

review increase by 0.26793 (odds ratio

increases by 30.7%).

price_level：compared to price level 1,

price level 2's log-odds of attracting an

elite review increase by 0.23 (odds ratio

increases by 26.8%).

odds ratio:

Part 1: Factors Influencing Elite Review AttractionPart 1: Factors Influencing Elite Review Attraction
1.2 The likelihood of attracting elite reviews varies between different price levels.

Interpretation:

emmeans: Higher price level have slightly

higher probabilities of receiving elite

reviews, with price level 4 having the

highest probability (0.937).

price_2 / price_1: Odds ratio of 1.27, with

a p-value < 0.05. Restaurants with

price_2 have 27% higher odds of

attracting elite reviews compared to

price_1 (the cheapest tier), holding stars

constant.

All other pairs are not statistically

significant, with p values all > 0.05.

Interpretation:

rst.stars: for one increase in the restaurant's star

rating, the log-odds of receiving an elite review

increase by 0.26804 (odds ratio increase by

30.7%) compared to the price level 1. (p<0.05)

price level 2: for restaurants with price level 2, the

log-odds of receiving an elite review increase by

0.23818 (odds ratio increase by 26.8%) compared

to the price level 1. (p<0.05)

prime location, distance to a destination, health

alarm: not significant (p>0.05), meaning no

substantial impact on elite review likelihood.

Part 1: Factors Influencing Elite Review AttractionPart 1: Factors Influencing Elite Review Attraction
1.3 restaurant's location and potential health concerns

odds ratio

Part 1: Factors Influencing Elite Review AttractionPart 1: Factors Influencing Elite Review Attraction
1.4 Model 2 provides a better explanation of which restaurants attract elite reviews?

H0: The additional predictors do not improve the model fit. Model 1 is as good as Model 2.
H1: The additional predictors improve the model fit. Model 2 provides a better fit than Model 1.

Since p value > 0.05, we cannot reject H0. While Model 2 has a slightly higher log-likelihood
(-1947.7 compared to -1948.0), the difference is very small. Therefore, we do not have enough
evidence to say that adding the predictors improve the model fit.
Model 1 is as good as Model 2, so we recommend using Model 1 for predicting whether a restaurant
attracts elite reviews because of its simplicity.

Part 2: Elite Reviews & Price LevelPart 2: Elite Reviews & Price Level
2.1 Pricing strategy and its affect on attracting elite reviewers.

Restaurants with elite reviews have 38.61% higher
relative risk of being price-level 2 restaurants than
price-level 1 restaurants.
Restaurants with elite reviews have 96.15% higher
relative risk of being price-level 3 restaurants than
price-level 1 restaurants.
Restaurants with elite reviews have 123.20% higher
relative risk of being price-level 4 restaurants than
price-level 1 restaurants; however, this difference is
not statistically significicant.

Exponentiate coefficients yields RRR values.

Part 2: Elite Reviews & Price LevelPart 2: Elite Reviews & Price Level
2.2 The probability of being in each price level when there are elite reviews.

Restaurants with elite reviews are:
 8.81% significantly less likely to be in price level 1.
6.95% significantly more likely to be in price level 2.
1.28% more likely to be in price level 3.
0.57% more likely to be in price level 4.

Having elite reviews most noticeably shifts the
likelihood of restaurants being in price level 1
to price level 2, although there are increases in
probability of being in price level 3 and 4, the
difference is slight.

Part 2: Elite Reviews & Price LevelPart 2: Elite Reviews & Price Level
2.3 Business implications and marketing strategies

The multinomial regression analysis shows that has_elite is a partially good
predictor for price_level.

Restaurants with elite reviews are less likely to be in the cheaper price
range (price level 1), and more likely to be in the mid to high price ranges
(price level 2 and 3).
Price level 2 is the most probable level with elite reviews (48%).

Business implications for restaurants:
Higher-range restaurants should leverage elite reviews in promotional
content to signify quality and justify price range.
If a restaurant is targeting a specific price range, attracting elite reviews
can help them achieve their positioning.
Premium restaurants (price level 4) may attract elite reviews, but lack
of statistic significance suggest that they need extra branding and
marketing effort to justify high price range.

Key coefficient for has_elite.f1 is:

Estimate = 0.3644

Standard Error = 0.08487

p-value = 1.76e-05 (<0.05)

A positive coefficient (β = 0.3644) means elite-reviewed

restaurants have:

 Lower odds of being in lower price levels (≤ price_1, ≤

price_2, etc.)

Higher odds of being in higher price levels (≥ price_2, ≥

price_3, etc.)

Elite-reviewed restaurants have 44% higher odds (OR ≈ 1.44)

of being in a higher price category than those without elite

reviews, at every price threshold.

Part 3: Further Exploration with Ordinal Logistic RegressionPart 3: Further Exploration with Ordinal Logistic Regression
3.1 Ordinal logistic regression

Threshold
Intercept

(αₖ)

Odds
Ratio

= exp(αₖ)
Interpretation

price_1 |
price_2

0.2626 ≈ 1.30

Restaurants without elite reviews
have 30% higher odds of being
price_1 or lower (vs. price_2 and
above)

price_2 |
price_3

3.4369 ≈ 31.09

Restaurants without elite reviews
have very high odds (～31 times) of
being in price level 2 or below (vs. 3
or 4).

price_3 |
price_4

4.7663 ≈ 117.63

Restaurants without elite reviews
have extremely high odds (～118
times) of being in price level 3 or
below (vs. price level 4).

Part 3: Further Exploration with Ordinal Logistic RegressionPart 3: Further Exploration with Ordinal Logistic Regression
3.2 Interpret the odds ratios of being at or below each price level (the intercepts)

The high odd-ratio is because that the dataset
contains very few high-price-level restaurants (e.g.,
price_3 and especially price_4), then: Most
restaurants fall into price_1 or price_2, and
The model learns that the cumulative probability of
being in a low price level is very high.

Part 3: Further Exploration with Ordinal Logistic RegressionPart 3: Further Exploration with Ordinal Logistic Regression

Difference in probabilities

=P(price_4∣has_elite=1)−P(price_4∣has_elite=0)

=0.01211−0.00844

=0.00367

3.3 the difference in predicted probabilities of being at price_level 4

Part 3: Further Exploration with Ordinal Logistic RegressionPart 3: Further Exploration with Ordinal Logistic Regression
3.4 Comparison between ordinal and multinomial logistic regression

Price Level
Elite v.s.

Non-elite

Multinomial
Logistice

Regression

Ordinal
Logistice

Regression

price_1
Elite 0.47488 0.47456 elite lower

than non-
eliteNon-Elite 0.56301 0.56527

price_2
Elite 0.4803 0.48118 elite higher

than non-
eliteNon-Elite 0.4108 0.40357

price_3
Elite 0.03249 0.03215 elite slightly

higher than
non-eliteNon-Elite 0.01964 0.02272

price_4
Elite 0.01232 0.01211 elite slightly

higher than
non-eliteNon-Elite 0.00655 0.00844

Both ordinal and multinomial logistic

regression models show consistent

patterns in how elite reviews (has_elite)

relate to restaurant price level:

Restaurants with elite reviews

(has_elite = 1) are more likely to be in

higher price categories, particularly

price_2, price_3, and price_4, although

the effect weakens for price level 4.

Part 3: Further Exploration with Ordinal Logistic RegressionPart 3: Further Exploration with Ordinal Logistic Regression
3.4 Comparison between ordinal and multinomial logistic regression

Multinomial logistic regression Ordinal logistic regression

Part 3: Further Exploration with Ordinal Logistic RegressionPart 3: Further Exploration with Ordinal Logistic Regression
3.4 Which model to choose?

p-value = 0.72 > 0.05, we fail to reject the

null hypothesis. This means the parallel

regression assumption holds: the

relationship between has_elite and the

cumulative odds of being in a higher price

category is consistent across thresholds.

Use the brant test is used to test the parallel

regression assumption of ordinal logistic regression.

The ordinal logistic model is more appropriate:

The parallel regression assumption holds

holds (validated by the Brant test),

Price levels are naturally ordered (e.g.,

price_1 < price_2 < price_3 < price_4

Ordinal model offers better interpretability

and efficiency (as shown earlier)

Part 3: Further Exploration with Ordinal Logistic RegressionPart 3: Further Exploration with Ordinal Logistic Regression

Data Insight:
Restaurants with elite reviews are significantly less likely to be in
the cheapest tier (price_1) and more likely to occupy mid-to-high
tiers (price_2–price_4).
The largest shift occurs in price_2, where elite-reviewed
restaurants have a 48% probability of appearing—making it the
most common category for elite-affiliated venues.

StrategicStrategic
RecommendationsRecommendations

01.

02.

Yelp’s Role:
Enhance transparency by showing elite review distribution
across price tiers and debunking the myth that elite
feedback = high cost.
Yelp might offer filters based on elite reviewer presence
across price tiers, helping users find high-value options.

Restaurant Actions:
Attracting elite reviewers may enhance reputation but
does not strongly justify price increases—especially in
higher tiers where elite presence diminishes.
Since elite reviewers are more active at lower price
levels, affordable restaurants can leverage this by
promoting elite feedback to drive traffic and trust.
Mid-tier establishments (price_2) should actively
encourage elite reviews (e.g., through exceptional service
or loyalty programs) to capitalize on this demand shift.

Thank youThank you
very much!very much!

AppendixAppendix
Part 1:
Q1.1
biz$has_elite = ifelse(biz$elite_cnt > 0, 1, 0)

glm.model=glm(has_elite ~ rst.stars + price_level, data=biz, family=binomial)

summary(glm.model)

coef(glm.model)[2]

exp(coef(glm.model)[2])
exp(coef(glm.model)[3])
exp(coef(glm.model)[4])
exp(coef(glm.model)[5])

Q1.2
library(emmeans)
emmeans(glm.model, ~ price_level)
emmeans(glm.model, ~ price_level, type="response")

pairs(emmeans(glm.model, ~ price_level, type="response"), reverse = T)

pairs(emmeans(glm.model2, ~ metro, type="response"), reverse = T)

Q1.3
str(biz)
glm.model2=glm(has_elite ~ rst.stars + price_level + factor(prime_location)
 + dist_destination + factor(health_alarm), data=biz, family=binomial)
summary(glm.model2)
exp(coef(glm.model2)[6])
exp(coef(glm.model2)[7])
exp(coef(glm.model2)[8])

Q1.4
Likelihood ratio test (LRT) for model1 and model2
install.packages("lmtest")
library(lmtest)
lrtest(glm.model, glm.model2)

AppendixAppendix
Part 2:
Q2

multinomial logistic regression
#install.packages("nnet")
library(nnet)
multinom.model=multinom(price_level ~ factor(has_elite),
 data=biz, maxit=1000)

summary(multinom.model)

install.packages("stargazer")
stargazer::stargazer(multinom.model, type = "text")

Relative risk ratio (RRR): exponentiate the multinomial logit coefficients
rrrs <- exp(coef(multinom.model))
print(rrrs)

library(emmeans)
emmeans(multinom.model, ~ has_elite|price_level, mode="latent") #logit
emmeans(multinom.model, ~ has_elite|price_level, mode="prob") #probability

#pairwise comparisons
pairs(emmeans(multinom.model, ~ has_elite|price_level, mode="prob"))

emmip(multinom.model, has_elite ~ price_level, mode="prob") #probability

AppendixAppendix
Part 3:
Q3
##Ordinal logistic regression
library(MASS)
biz$price.f=as.factor(biz$price_level)
biz$has_elite.f=as.factor(biz$has_elite)

ordinal.model <- polr(price.f~ has_elite.f, data = biz, Hess = TRUE)
summary(ordinal.model)

#The summary function does not return p-values for the coefficients,
#so we calculate them.
ctable <- coef(summary(ordinal.model))
p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2
ctable <- cbind(ctable, "p value" = p)
ctable

emmeans(ordinal.model, ~ has_elite.f|price.f, mode = "prob")
emmip(ordinal.model, has_elite.f~ price.f, CIs = T, mode = "prob")

emmeans(ordinal.model, ~ price.f|has_elite.f, mode = "prob")
emmip(ordinal.model, has_elite.f~ price.f, CIs = T, mode = "prob")

##brant test
install.packages("brant")
library(brant)
brant(ordinal.model)

HW5HW5
Group 9: Grace Chen, Vanessa
Chen, Amanda Lee, Sheryl Xu

1.1 Elite reviews, price levels and effects on restaurant staying open

Elite Status:

Each additional review increases the likelihood of a

restaurant staying open by about 1.75% (exp^0.017).

Part 1: Baseline ModelPart 1: Baseline Model

Variable Coefficient Odds Ratio = exp(coef)

elite_cnt 0.017377 exp⁡(0.017377)≈1.0175

1.1 Elite reviews, price levels and effects on restaurant staying open

Price Level:

Price level 2 restaurants are 44% (exp^-0.57) less likely

to stay open than price level 1 restaurants.

Price level 3 restaurants are 68% (exp^-1.12) less likely

to stay open than price level 1 restaurants.

Price level 4 restaurants are 70% (exp^-1.19) less likely

to stay open than price level 1 restaurants.

Part 1: Baseline ModelPart 1: Baseline Model

Price Level Coefficient
Odds Ratio =

exp(coef)
Interpretation

price_2 -0.575534 ≈ 0.56
44% lower odds of staying open

vs. price_1

price_3 -1.128083 ≈ 0.32
68% lower odds of staying open

vs. price_1

price_4 -1.19881 ≈ 0.30
70% lower odds of staying open

vs. price_1

1.2 & 1.3 Setting threshold to minimize total expected cost

Confusion Matrix

Actual

Closed Open

Predicted

Closed 935 853

Open 1215 2963

Part 1: Baseline ModelPart 1: Baseline Model

Costs of false prediction:

Each False Positive prediction (predicting

restaurant open when it’s closed): $55

Each False Negative prediction (predicting

restaurant closed when it’s open): $20

Cost-Sensitive Thresholding

Calculating total expected costs at each

threshold shows that Optimal Threshold

that minimizes total expected cost is 0.7.

HOWEVER...

Sensitivity and specificity should be balanced to

deliver good user experience.

Optimal Youden’s index that balances both sensitivity
and specificity and minimizes cost is 0.574.

Confusion matrix at 0.574 as threshold:

Youden’s Index

1.4 Mean accuracy across all thresholds between the cost-sensitive threshold
and the threshold that maximizes Youden’s Index.

Part 1: Baseline ModelPart 1: Baseline Model

Mean accuracy across all thresholds between the cost-sensitive threshold and
the threshold that maximizes Youden’s Index is 0.574.
In the range of thresholds, the model's predictions are correct about 57.4% of the
time on average.

1.5 Model 2's predictive power compared to Model 1

Part 1: Model 2, including average star rating andPart 1: Model 2, including average star rating and number ofnumber of
reviews from repeated consumersreviews from repeated consumers

Model 1
AUC: 0.6456

Model 2:
AUC: 0.703

Model 2 shows a meaningful improvement over Model 1, increasing the AUC from
0.6456 (poor predictive power) to 0.703 (fair predictive power).
Model 2 is more reliable and useful for decision-making.

Yelp’s guideline:
0.6–0.7: Poor (weak predictive power).
0.7–0.8: Fair (moderate usefulness for decision-making).

1.6 Identify high-probability restaurant segments

Part 1: Model 2, including average star rating andPart 1: Model 2, including average star rating and number ofnumber of
reviews from repeated consumersreviews from repeated consumers

segments where lift index (non-
cumulative) > 100%: top 5 deciles
(Depths 10–50)

% of open restaurants captured in these
high-lift segments: 60.5%

% of total restaurants covered (to
assess targeting efficiency)：2983/5966
= 50%

1.6 Marketing strategy recommendations for Yelp

Part 1: Model 2, including average star rating andPart 1: Model 2, including average star rating and number ofnumber of
reviews from repeated consumersreviews from repeated consumers

Prioritize restaurants in the top 5 deciles of predicted survival probability for the

delivery service pilot.

These segments achieve a Lift Index > 100%, meaning they significantly

outperform random targeting. Specifically, by targeting just 50% of the

restaurant population, Yelp can capture over 60% of open businesses,

demonstrating high targeting efficiency.

Marketing efforts (e.g., promotional credits) should also be concentrated in

these high-lift groups. Additionally, segment-specific messaging can be used

to appeal to business owners’ demonstrated strength and survival probability,

reinforcing Yelp’s value as a trusted partner.

Step 1 - Partition:
Randomly reserve 30% of data as the test set (holdout).

Step 2 - Train:
Use the remaining 70% (training set) to build the model.

Step 3 - Evaluate:
Test the model on the untouched test set to measure

real�world performance.

2.1.1. Calculate and report the AUC of each model on both the train and test sets

Part 2.1: Model Evaluations with Test SetPart 2.1: Model Evaluations with Test Set

For both model: Train AUC ≈ Test AUC

→ Stable performance & minimal overfitting

→ Trust the model.

AUC of model 1 on

train and test sets

AUC of model 2 on

train and test sets

Recommend Model 2:
Model 2 consistently outperforms Model 1 on both the

training and test sets.

Model 1’s test set AUC falls in the “poor” range (0.6–0.7)

Model 2’s test set AUC is almost in the “fair” range (0.7–

0.8), based on Yelp’s guidelines.

The test AUC improvement from 0.6402 to 0.6975

indicates that Model 2 generalizes better to unseen data.

The training and test AUCs of Model 2 are close,

suggesting low overfitting despite the more complex

specification.

Part 2.1: Model Evaluations with Test SetPart 2.1: Model Evaluations with Test Set
2.1.2. Which model would you recommend based on the AUC comparison?

Model Train Set AUC Test Set AUC Predictive Power

Model 1 0.6479 0.6402 0.6–0.7: Poor

Model 2 0.7053 0.6975 0.7–0.8: Fair

Part 2.2: Model 3Part 2.2: Model 3
10-fold cross validation of three models

Model Mean AUC (Train) Mean AUC (Test)

Model 1 0.6464 0.6373

Model 2 0.7035 0.6962

Model 3 0.7217 0.7122

When the new Model 3 is introduced, we can see the

average AUC is higher than the previous two models,

which means Model 3 has a stronger prediction power.

By checking the train AUC and test AUC, both Model 2

and Model 3 show a good ability of generalization.

Model 1 showed a poor prediction power since the

mean AUCs are similar to the baseline AUC.

Model 3 = glm(is_open ~ poly(elite_cnt, 2, raw=T) + price_level*biz.stars*repeated_cnt + city)

Part 2.2: Model 3Part 2.2: Model 3
AUC comparison and best model

Model
Mean AUC
(Train)

Mean AUC
(Test)

% Change
compared to
baseline model

Model 1 0.6464 0.6373

Model 2 0.7035 0.6962 9.24% (marginal)

Model 3 0.7217 0.7122 11.75% (marginal)

*from model 2 to model 3: improved 1.82%

Improvement Magnitude:

Model 2 achieves a +9.24% AUC gain over Model 1,

which crosses the 5% threshold for marginal

improvement. Model 3, while the best performer,

offers 11.75% improvement of AUC over Model 1. Still

within the marginal range.

Complexity-Utility Tradeoff:

Model 3 introduces significant complexity for a

minimal performance gain. This risks overfitting in

practice, especially if the sample size is limited.

Model 2 provides a better balance: it captures

meaningful patterns without excessive complexity.

Practical Considerations:

If future data exhibits distribution shifts, Model 2’s

simplicity may generalize more robustly.

AppendixAppendix
Part 1:

Q1.1
biz$has_elite = ifelse(biz$elite_cnt > 0, 1, 0)

glm.model=glm(has_elite ~ rst.stars + price_level, data=biz,
family=binomial)

summary(glm.model)

coef(glm.model)[2]

exp(coef(glm.model)[2])
exp(coef(glm.model)[3])
exp(coef(glm.model)[4])
exp(coef(glm.model)[5])

Q1.2
predictions from the model
pred_probs <- predict(glm.model1, type = "response")

install.packages("pROC") #if you have not installed the package
library(pROC)
ROC curve analysis
roc_obj <- roc(biz$is_open, pred_probs)

plot(roc_obj, main = "ROC Curve", print.auc = T,
 legacy.axes = TRUE, lwd = 2)

#Cost-Sensitive Thresholding
cost_FP <- 55
cost_FN <- 20

library(dplyr)
Calculate costs for all thresholds
coords returns the coordinates of the ROC curve at one or several specified point(s).
costs <- coords(roc_obj, "all",
 ret = c("threshold", "fp", "fn")) %>%
 mutate(total_cost = fp * cost_FP + fn * cost_FN)

count the fp and fn under each thresholld
coords(roc_obj, "all", ret = c("threshold", "fp", "fn"))

Find optimal threshold: minimizing total cost
optimal_threshold <- costs$threshold[which.min(costs$total_cost)]
print(paste("Optimal threshold:", round(optimal_threshold, 3)))

AppendixAppendix
Part 1:

Q1.3
##** youden index: This threshold represents the point where the
model achieves **
Extract sensitivity, specificity, and thresholds
youden <- coords(roc_obj, "all", ret = c("threshold", "sensitivity",
"specificity"))
youden

Calculate Youden's J and find the optimal threshold
youden$youden_j <- youden$sensitivity + youden$specificity - 1
youden

optimal_idx <- which.max(youden$youden_j)
optimal_threshold2 <- youden$threshold[optimal_idx]

print(paste("Optimal Threshold (Youden's Index):",
round(optimal_threshold2, 3)))

count the tp tn fp and fn under optimal_threshold2
coords(roc_obj, optimal_threshold2, ret = c("threshold", "tp", "tn", "fp", "fn"))

matrix
conf_matrix <- matrix(
 c(2963, 1215, 853, 935),
 nrow = 2,
 byrow = TRUE,
 dimnames = list(
 "Predicted" = c("Positive", "Negative"),
 "Actual" = c("Positive", "Negative")
)
)

print(conf_matrix)

AppendixAppendix
Part 1:

Q1.4
Step 1: Get all threshold-level stats from the ROC object
all_coords <- coords(roc_obj, "all", ret = c("threshold", "tp", "tn", "fp",
"fn"))

Step 2: Filter thresholds between 0.574 and 0.7
filtered_coords <- subset(all_coords, threshold >= 0.574 &
threshold <= 0.7)

Step 3: Calculate accuracy for each threshold
filtered_coords$accuracy <- (filtered_coords$tp +
filtered_coords$tn) /
 (filtered_coords$tp + filtered_coords$tn + filtered_coords$fp +
filtered_coords$fn)

Step 4: Compute mean accuracy
mean_accuracy <- mean(filtered_coords$accuracy)

Step 5: Print result
cat("Mean Accuracy between thresholds 0.574 and 0.7 is",
round(mean_accuracy, 4), "\n")

Q1.5
glm.model2= glm(is_open ~ elite_cnt + price_level * biz.stars +
repeated_cnt, biz, family =
 binomial)

summary(glm.model2)

model 1
pred_probs1 <- predict(glm.model1, type = "response")

library(pROC)
roc_obj1 <- roc(biz$is_open, pred_probs1)
print(roc_obj1)

plot(roc_obj1, main = "ROC Curve", print.auc = T,
 legacy.axes = TRUE, lwd = 2)

model 2
pred_probs2 <- predict(glm.model2, type = "response")

roc_obj2 <- roc(biz$is_open, pred_probs2)
print(roc_obj2)

plot(roc_obj2, main = "ROC Curve", print.auc = T,
 legacy.axes = TRUE, lwd = 2)

AppendixAppendix
Part 1:

Q1.6

#** Generate gains table **

biz$pred_prob2 <- pred_probs2 <- predict(glm.model2, type =
"response")

str(biz)

install.packages("gains")
library(gains)
gains_table <- gains(actual = biz$is_open, predicted =
biz$pred_prob2,
 groups = 10)
print(gains_table)

AppendixAppendix
Part 2:

Q2.1

set.seed(123)
train_indices <- sample(1:nrow(biz), size = 0.7 * nrow(biz))

train_data <- biz[train_indices,]
test_data <- biz[-train_indices,]

Model 1
glm.model1=glm(is_open ~ elite_cnt + price_level, data=biz,
family=binomial)
Model 2
glm.model2= glm(is_open ~ elite_cnt + price_level * biz.stars +
repeated_cnt, biz, family =
 binomial)

Predictions
train_pred1 <- predict(glm.model1, train_data, type = "response")
test_pred1 <- predict(glm.model1, test_data, type = "response")

train_pred2 <- predict(glm.model2, train_data, type = "response")
test_pred2 <- predict(glm.model2, test_data, type = "response")

library(pROC)
Compare AUC
model1_auc <- c(
 auc(roc(train_data$is_open, train_pred1)),
 auc(roc(test_data$is_open, test_pred1)))

names(model1_auc) <- c("Train Set", "Test Set")
print(model1_auc)

model2_auc <- c(
 auc(roc(train_data$is_open, train_pred2)),
 auc(roc(test_data$is_open, test_pred2)))

names(model2_auc) <- c("Train Set", "Test Set")
print(model2_auc)

AppendixAppendix
Part 2:

Q2.2

###****************** 10-fold cross-validation *************************
glm.model3= glm(is_open ~ poly(elite_cnt, 2, raw=T) +
price_level*biz.stars*repeated_cnt + city,
 biz, family=binomial)

summary(glm.model3)

Set seed for reproducibility
set.seed(123)

Define number of folds
k <- 10
folds <- cut(seq(1, nrow(biz)), breaks = k, labels = FALSE)
table(folds)

biz$is_open_f <- factor(ifelse(biz$is_open==1, "open", "closed"),
 levels=c("open","closed"))
str(biz)

Load required library
library(pROC)

###********Model 1**********
Initialize vector to store AUCs
auc_values1_test <- numeric(k)
auc_values1_train <- numeric(k)

Perform k-fold CV
for(i in 1:k) {
 # Split into train and test sets
 test_indices <- which(folds == i)
 train_data <- biz[-test_indices,]
 test_data <- biz[test_indices,]

 model <- glm(is_open_f ~ elite_cnt + price_level,
 data = train_data, family = binomial)

 # Predict probabilities on the test set
 pred_probs1_train <- predict(model, newdata = train_data, type = "response")
 pred_probs1_test <- predict(model, newdata = test_data, type = "response")

 # Compute AUC
 roc_obj1_train <- roc(train_data$is_open_f, pred_probs1_train)
 roc_obj1_test <- roc(test_data$is_open_f, pred_probs1_test)
 auc_values1_train[i] <- auc(roc_obj1_train)
 auc_values1_test[i] <- auc(roc_obj1_test)
}

Combine results into a data frame
cv_results1 <- data.frame(
 Fold = 1:k,
 AUC_Train = auc_values1_train,
 AUC_Test = auc_values1_test
)
cv_results1

Mean AUC for training data
mean_auc_train1 <- mean(cv_results1$AUC_Train)

Mean AUC for test data
mean_auc_test1 <- mean(cv_results1$AUC_Test)

Print the results
mean_auc_train1 #0.6464
mean_auc_test1 #0.6373

###********Model 2**********
Initialize vector to store AUCs
auc_values2_test <- numeric(k)
auc_values2_train <- numeric(k)

Perform k-fold CV
for(i in 1:k) {
 # Split into train and test sets
 test_indices <- which(folds == i)
 train_data <- biz[-test_indices,]
 test_data <- biz[test_indices,]

 model <- glm(is_open ~ elite_cnt + price_level * biz.stars + repeated_cnt, biz, family =
 binomial)

 # Predict probabilities on the test set
 pred_probs2_train <- predict(model, newdata = train_data, type = "response")
 pred_probs2_test <- predict(model, newdata = test_data, type = "response")

 # Compute AUC
 roc_obj2_train <- roc(train_data$is_open_f, pred_probs2_train)
 roc_obj2_test <- roc(test_data$is_open_f, pred_probs2_test)
 auc_values2_train[i] <- auc(roc_obj2_train)
 auc_values2_test[i] <- auc(roc_obj2_test)
}

Combine results into a data frame
cv_results2 <- data.frame(
 Fold = 1:k,
 AUC_Train = auc_values2_train,
 AUC_Test = auc_values2_test
)
cv_results2

Mean AUC for training data
mean_auc_train2 <- mean(cv_results2$AUC_Train)

Mean AUC for test data
mean_auc_test2 <- mean(cv_results2$AUC_Test)

Print the results
mean_auc_train2 #0.7035
mean_auc_test2 #0.6962

Train AUC ≈ Test AUC Stable performance. Trust the model.

v###********Model 3**********
Initialize vector to store AUCs
auc_values3_test <- numeric(k)
auc_values3_train <- numeric(k)

Perform k-fold CV
for(i in 1:k) {
 # Split into train and test sets
 test_indices <- which(folds == i)
 train_data <- biz[-test_indices,]
 test_data <- biz[test_indices,]

 model <- glm(is_open ~ poly(elite_cnt, 2, raw=T) + price_level*biz.stars*repeated_cnt +
city,
 biz, family=binomial)

 # Predict probabilities on the test set
 pred_probs3_train <- predict(model, newdata = train_data, type = "response")
 pred_probs3_test <- predict(model, newdata = test_data, type = "response")

 # Compute AUC
 roc_obj3_train <- roc(train_data$is_open_f, pred_probs3_train)
 roc_obj3_test <- roc(test_data$is_open_f, pred_probs3_test)
 auc_values3_train[i] <- auc(roc_obj3_train)
 auc_values3_test[i] <- auc(roc_obj3_test)
}

Combine results into a data frame
cv_results3 <- data.frame(
 Fold = 1:k,
 AUC_Train = auc_values3_train,
 AUC_Test = auc_values3_test
)
cv_results3

Mean AUC for training data
mean_auc_train3 <- mean(cv_results3$AUC_Train)

Mean AUC for test data
mean_auc_test3 <- mean(cv_results3$AUC_Test)

Print the results
mean_auc_train3 #0.7217
mean_auc_test3 #0.7122

Train AUC ≈ Test AUC Stable performance. Trust the model.

Q2.2.2

baseline is Model1’s Test AUC
baseline <- results$Test_AUC[results$Model=="Model1"]

compute relative improvements
improv2 <- (results$Test_AUC[results$Model=="Model2"] - baseline) /
baseline
improv3 <- (results$Test_AUC[results$Model=="Model3"] - baseline) /
baseline

pick best of Model2/3
if (improv2 > improv3) {
 best_model <- "Model2"; best_improv <- improv2
} else {
 best_model <- "Model3"; best_improv <- improv3
}

decision logic
if (best_improv < 0.05) {
 cat("All more complex models improve < 5% → stick with Model1
(simplest).\n")
} else if (best_improv > 0.15) {
 cat(sprintf("%s is substantially better (%.1f%% ↑) → use %s.\n",
 best_model, best_improv*100, best_model))
} else {
 cat(sprintf("%s yields a moderate gain of %.1f%% (5–15%%) → not worth the
extra complexity; stick with Model1.\n",
 best_model, best_improv*100))
}

